Do you want to publish a course? Click here

Hydrostatic strain enhancement in laterally confined SiGe nanostripes

129   0   0.0 ( 0 )
 Added by Alberto Tagliaferri
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Strain-engineering in SiGe nanostructures is fundamental for the design of optoelectronic devices at the nanoscale. Here we explore a new strategy, where SiGe structures are laterally confined by the Si substrate, to obtain high tensile strain avoiding the use of external stressors, and thus improving the scalability. Spectro-microscopy techniques, finite element method simulations and ab initio calculations are used to investigate the strain state of laterally confined Ge-rich SiGe nano-stripes. Strain information is obtained by tip enhanced Raman spectroscopy with an unprecedented lateral resolution of ~ 30 nm. The nano-stripes exhibit a large tensile hydrostatic strain component, which is maximum at the center of the top free surface, and becomes very small at the edges. The maximum lattice deformation is larger than the typical values of thermally relaxed Ge/Si(001) layers. This strain enhancement originates from a frustrated relaxation in the out-of-plane direction, resulting from the combination of the lateral confinement induced by the substrate side walls and the plastic relaxation of the misfit strain in the (001) plane at the SiGe/Si interface. The effect of this tensile lattice deformation at the stripe surface is probed by work function mapping, performed with a spatial resolution better than 100 nm using X-ray photoelectron emission microscopy. The nano-stripes exhibit a positive work function shift with respect to a bulk SiGe alloy, quantitatively confirmed by electronic structure calculations of tensile strained configurations. The present results have a potential impact on the design of optoelectronic devices at a nanometer length scale.



rate research

Read More

Strain-inducing deformations in graphene alter charge distributions and provide a new method to design specific features in the band structure and transport properties. Novel approaches implement engineered substrates to induce specifically targeted strain profiles. Motivated by this technique, we study the evolution of charge distributions with an increasing number of out-of-plane deformations as an example of a finite size periodic substrate. We first analyze a system of two overlapping deformations and determine the quantitative relation between geometrical parameters and features in the local density of states. We extend the study to sets of 3 and 4 deformations in linear and two-dimensional arrays and observe the emergence of moire patterns that are more pronounced for a hexagonal cell composed of 7 deformations. A comparison between the induced strain profile and spatial maps of the local density of states at different energies provides evidence for the existence of states confined by the pseudo-magnetic field in bounded regions, reminiscent of quantum dots structures. Due to the presence of these states, the energy level scaling to be observed by local probes should exhibit a linear dependence with the pseudo-field, in contrast to the expected scaling of pseudo-Landau levels.
We experimentally investigate the dynamics of a persistent spin helix in etched GaAs wire structures of 2 to 80 um width. Using magneto-optical Kerr rotation with high spatial resolution, we determine the lifetime of the spin helix. A few nanoseconds after locally injecting spin polarization into the wire, the polarization is strongly enhanced as compared to the two-dimensional case. This is mostly attributed to a transition to one-dimensional diffusion, strongly suppressing diffusive dilution of spin polarization. The intrinsic lifetime of the helical mode is only weakly increased, which indicates that the channel confinement can only partially suppress the cubic Dresselhaus spin-orbit interaction.
We examine energy spectra of Si quantum dots embedded into Si_{0.75}Ge_{0.25} buffers using atomistic numerical calculations for dimensions relevant to qubit implementations. The valley degeneracy of the lowest orbital state is lifted and valley splitting fluctuates with monolayer frequency as a function of the dot thickness. For dot thicknesses <6 nm valley splitting is found to be >150 ueV. Using the unique advantage of atomistic calculations we analyze the effect of buffer disorder on valley splitting. Disorder in the buffer leads to the suppression of valley splitting by a factor of 2.5, the splitting fluctuates with ~20 ueV for different disorder realizations. Through these simulations we can guide future experiments into regions of low device-to-device fluctuations.
155 - A. Wild , J. Sailer , J. Nutzel 2010
We present an electrostatically defined few-electron double quantum dot (QD) realized in a molecular beam epitaxy grown Si/SiGe heterostructure. Transport and charge spectroscopy with an additional QD as well as pulsed-gate measurements are demonstrated. We discuss technological challenges specific for silicon-based heterostructures and the effect of a comparably large effective electron mass on transport properties and tunability of the double QD. Charge noise, which might be intrinsically induced due to strain-engineering is proven not to affect the stable operation of our device as a spin qubit. Our results promise the suitability of electrostatically defined QDs in Si/SiGe heterostructures for quantum information processing.
We report density-dependent effective hole mass measurements in undoped germanium quantum wells. We are able to span a large range of densities ($2.0-11times10^{11}$ cm$^{-2}$) in top-gated field effect transistors by positioning the strained buried Ge channel at different depths of 12 and 44 nm from the surface. From the thermal damping of the amplitude of Shubnikov-de Haas oscillations, we measure a light mass of $0.061m_e$ at a density of $2.2times10^{11}$ cm$^{-2}$. We confirm the theoretically predicted dependence of increasing mass with density and by extrapolation we find an effective mass of $sim0.05m_e$ at zero density, the lightest effective mass for a planar platform that demonstrated spin qubits in quantum dots.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا