Do you want to publish a course? Click here

The mmax-Mecl relation, the IMF and IGIMF: probabilistically sampled functions?

308   0   0.0 ( 0 )
 Added by Carsten Weidner
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a new method to measure the dispersion of mmax values of star clusters and show that the observed sample of mmax is inconsistent with random sampling from an universal stellar initial mass function (IMF) at a 99.9% confidence level. The scatter seen in the mmax-Mecl data can be mainly (76%) understood as being the result of observational uncertainties only. The scatter of mmax values at a given Mecl are consistent with mostly measurement uncertainties such that the true (physical) scatter may be very small. Additionally, new data on the local star-formation regions Taurus-Auriga and L1641 in Orion make stochastically formed stellar populations rather unlikely. The data are however consistent with the local IGIMF (integrated galactic stellar initial mass function) theory according to which a stellar population is a sum of individual star-forming events each of which is described by well defined physical laws. Randomly sampled IMFs and henceforth scale-free star formation seems to be in contradiction to observed reality.



rate research

Read More

It has been claimed in the recent literature that a non-trivial relation between the mass of the most-massive star, mmax, in a star cluster and its embedded star cluster mass (the mmax-Mecl relation) is falsified by observations of the most-massive stars and the Halpha luminosity of young star clusters in the starburst dwarf galaxy NGC 4214. Here it is shown by comparing the NGC 4214 results with observations from the Milky Way that NGC 4214 agrees very well with the predictions of the the mmax-Mecl relation and the integrated galactic stellar initial mass function (IGIMF) theory and that this difference in conclusions is based on a high degree of degeneracy between expectations from random sampling and those from the mmax-Mecl relation, but are also due to interpreting mmax as a truncation mass in a randomly sampled IMF. Additional analysis of galaxies with lower SFRs than those currently presented in the literature will be required to break this degeneracy.
We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 Msun and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfven velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.
Spatially resolved kinematics of nearby galaxies has shown that the ratio of dynamical- to stellar population-based estimates of the mass of a galaxy ($M_*^{rm JAM}/M_*$) correlates with $sigma_e$, if $M_*$ is estimated using the same IMF for all galaxies and the stellar M/L ratio within each galaxy is constant. This correlation may indicate that, in fact, the IMF is more dwarf-rich for galaxies with large $sigma$. We use this correlation to estimate a dynamical or IMF-corrected stellar mass, $M_*^{rm alpha_{JAM}}$, from $M_{*}$ and $sigma_e$ for a sample of $6 times 10^5$ SDSS galaxies for which spatially resolved kinematics is not available. We also compute the `virial mass estimate $k(n,R),R_e,sigma_R^2/G$, where $n$ is the Sersic index, in the SDSS and ATLAS$^{rm 3D}$ samples. We show that an $n$-dependent correction must be applied to the $k(n,R)$ values provided by Prugniel & Simien (1997). Our analysis also shows that the shape of the velocity dispersion profile in the ATLAS$^{rm 3D}$ sample varies weakly with $n$: $(sigma_R/sigma_e) = (R/R_e)^{-gamma(n)}$. The resulting stellar mass functions, based on $M_*^{rm alpha_{JAM}}$ and the recalibrated virial mass, are in good agreement. If the $M_*^{rm alpha_{JAM}}/M_* - sigma_e$ correlation is indeed due to the IMF, and stellar M/L gradients can be ignored, then our $phi(M_*^{rm alpha_{JAM}})$ is an estimate of the stellar mass function in which $sigma_e$-dependent variations in the IMF across the population have been accounted for. Using a Fundamental Plane based observational proxy for $sigma_e$ produces comparable results. By demonstrating that cheaper proxies are sufficiently accurate, our analysis should enable a more reliable census of the mass in stars for large galaxy samples, at a fraction of the cost. Our results are provided in tabular form.
The origin of the stellar initial mass function (IMF) is a fundamental issue in the theory of star formation. It is generally fit with a composite power law. Some clues on the progenitors can be found in dense starless cores that have a core mass function (CMF) with a similar shape. In the low-mass end, these mass functions increase with mass, albeit the sample may be somewhat incomplete; in the high-mass end, the mass functions decrease with mass. There is an offset in the turn-over mass between the two mass distributions. The stellar mass for the IMF peak is lower than the corresponding core mass for the CMF peak in the Pipe Nebula by about a factor of three. Smaller offsets are found between the IMF and the CMFs in other nebulae. We suggest that the offset is likely induced during a starburst episode of global star formation which is triggered by the formation of a few O/B stars in the multi-phase media, which naturally emerged through the onset of thermal instability in the cloud-core formation process. We consider the scenario that the ignition of a few massive stars photoionizes the warm medium between the cores, increases the external pressure, reduces their Bonnor?Ebert mass, and triggers the collapse of some previously stable cores. We quantitatively reproduce the IMF in the low-mass end with the assumption of additional rotational fragmentation.
Aims. In this work we aim to estimate the lowest stellar mass that MICADO at the ELT will be able to reliably detect given a stellar density and distance. We also show that instrumental effects that will play a critical role, and report the number of young clusters that will be accessible for IMF studies in the local Universe with the ELT. Methods. We used SimCADO, the instrument simulator package for the MICADO camera, to generate observations of 56 dense stellar regions with densities similar to the cores of young stellar clusters. We placed the cluster fields at distances between 8 kpc and 5 Mpc from the Earth, implying core densities from 10^2 to 10^5 stars arcsec^-2, and determined the lowest reliably observable mass for each stellar field through point-spread function (PSF) fitting photometry. Results. Our results show that stellar densities of <10^3 stars arcsec^-2 will be easily resolvable by MICADO. The lowest reliably observable mass in the Large Magellanic Cloud will be around 0.1 Msun for clusters with densities <10^3 stars arcsec^-2. MICADO will be able to access the stellar content of the cores of all dense young stellar clusters in the Magellanic Clouds, allowing the peak and shape of the IMF to be studied in great detail outside the Milky Way. At a distance of 2 Mpc, all stars with M > 2 Msun will be resolved in fields of <10^4 stars arcsec^-2 , allowing the high-mass end of the IMF to be studied in all galaxies out to and including NGC300.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا