Do you want to publish a course? Click here

The stellar IMF from Isothermal MHD Turbulence

72   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 Msun and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfven velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.



rate research

Read More

This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correlation (or lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; v) the formation of cold, dense clouds aided by thermal instability; vi) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, and vii) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and diperses them while they collapse.
In this letter we describe how we use stellar dynamics information to constrain the shape of the stellar IMF in a sample of 27 early-type galaxies from the CALIFA survey. We obtain dynamical and stellar mass-to-light ratios, $Upsilon_mathrm{dyn}$ and $Upsilon_{ast}$, over a homogenous aperture of 0.5~$R_{e}$. We use the constraint $Upsilon_mathrm{dyn} ge Upsilon_{ast}$ to test two IMF shapes within the framework of the extended MILES stellar population models. We rule out a single power law IMF shape for 75% of the galaxies in our sample. Conversely, we find that a double power law IMF shape with a varying high-mass end slope is compatible (within 1$sigma$) with 95% of the galaxies. We also show that dynamical and stellar IMF mismatch factors give consistent results for the systematic variation of the IMF in these galaxies.
82 - Martin Lemoine 2021
Non-thermal acceleration of particles in magnetohydrodynamic (MHD) turbulence plays a central role in a wide variety of astrophysical sites. This physics is addressed here in the context of a strong turbulence, composed of coherent structures rather than waves, beyond the realm of quasilinear theory. The present description tracks the momentum of the particle through a sequence of frames in which the electric field vanishes, in the spirit of the original Fermi scenario. It connects the sources of energy gain (or loss) to the gradients of the velocity of the magnetic field lines, in particular the acceleration and the shear of their velocity flow projected along the field line direction, as well as their compression in the transverse plane. Those velocity gradients are subject to strong intermittency: they are spatially localized and their strengths obey powerlaw distributions, as demonstrated through direct measurements in the incompressible MHD simulation of the Johns Hopkins University database. This intermittency impacts the acceleration process in a significant way, which opens up prospects for a rich phenomenology. In particular, the momentum distribution, which is here captured through an analytical random walk model, displays extended powerlaw tails with soft-to-hard evolution in time, in general agreement with recent kinetic numerical simulations. Extensions to this description and possible avenues of exploration are discussed.
68 - Pavel Kroupa 2019
Some ultra-compact dwarf galaxies have large dynamical mass to light (M/L) ratios and also appear to contain an overabundance of LMXB sources, and some Milky Way globular clusters have a low concentration and appear to have a deficit of low-mass stars. These observations can be explained if the stellar IMF becomes increasingly top-heavy with decreasing metallicity and increasing gas density of the forming object. The thus constrained stellar IMF then accounts for the observed trend of metallicity and M/L ratio found amongst M31 globular star clusters. It also accounts for the overall shift of the observationally deduced galaxy-wide IMF from top-light to top-heavy with increasing star formation rate amongst galaxies. If the IMF varies similarly to deduced here, then extremely young very massive star-burst clusters observed at a high redshift would appear quasar-like (Jerabkova et al. 2017) .
60 - Brant Robertson 2018
The properties of supersonic isothermal turbulence influence a variety of astrophysical phenomena, including the structure and evolution of star forming clouds. This work presents a simple model for the structure of dense regions in turbulence in which the density distribution behind isothermal shocks originates from rough hydrostatic balance between the pressure gradient behind the shock and its deceleration from ram pressure applied by the background fluid. Using simulations of supersonic isothermal turbulence and idealized waves moving through a background medium, we show that the structural properties of dense, shocked regions broadly agree with our analytical model. Our work provides a new conceptual picture for describing the dense regions, which complements theoretical efforts to understand the bulk statistical properties of turbulence and attempts to model the more complex features of star forming clouds like magnetic fields, self-gravity, or radiative properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا