We compare the predictions of the SuperScaling model for charged current quasielastic muonic neutrino and antineutrino scattering from $^{12}$C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results to different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti-)neutrino cross sections relevant for the $ u$STORM facility.
The MiniBooNE large axial mass anomaly has prompted a great deal of theoretical work on sophisticated Charged Current Quasi-Elastic (CCQE) neutrino interaction models in recent years. As the dominant interaction mode at T2K energies, and the signal process in oscillation analyses, it is important for the T2K experiment to include realistic CCQE cross section uncertainties in T2K analyses. To this end, T2Ks Neutrino Interaction Working Group has implemented a number of recent models in NEUT, T2Ks primary neutrino interaction event generator. In this paper, we give an overview of the models implemented, and present fits to published muon neutrino and muon antineutrino CCQE cross section measurements from the MiniBooNE and MINERvA experiments. The results of the fits are used to select a default cross section model for future T2K analyses, and to constrain the cross section uncertainties of the model. We find a model consisting of a modified relativistic Fermi gas model and multinucleon interactions most consistently describes the available data.
We present our description of neutrino induced charged current quasielastic scattering (CCQE) in nuclei at energies relevant for the MiniBooNE experiment. In our framework, the nucleons, with initial momentum distributions according to the Local Fermi Gas model, move in a density- and momentum-dependent mean field potential. The broadening of the outgoing nucleons due to nucleon-nucleon interactions is taken into account by spectral functions. Long range (RPA) correlations renormalizing the electroweak strength in the medium are also incorporated. The background from resonance excitation events that do not lead to pions in the final state is also predicted by propagating the outgoing hadrons with the Giessen semiclassical BUU model in coupled channels (GiBUU). We achieve a good description of the shape of the CCQE Q2 distribution extracted from data by MiniBooNE, thanks to the inclusion of RPA correlations, but underestimate the integrated cross section when the standard value of MA = 1 GeV is used. Possible reasons for this mismatch are discussed.
Superscaling of the quasielastic cross section in charged current neutrino-nucleus reactions at energies of a few GeV is investigated within the framework of the relativistic impulse approximation. Several approaches are used to describe final state interactions and comparisons are made with the plane wave approximation. Superscaling is very successful in all cases. The scaling function obtained using a relativistic mean field for the final states shows an asymmetric shape with a long tail extending towards positive values of the scaling variable, in excellent agreement with the behavior presented by the experimental scaling function.
The analysis of charged-current quasielastic neutrino and antineutrino-nucleus scattering cross sections requires relativistic theoretical descriptions also accounting for the role of final-state interactions. We compare the results of the relativistic Greens function model with the data recently published by the MINER$ u$A Collaboration. The model is able to describe both MINER$ u$A and MiniBooNE data.
J.E.Amaro
,M.B.Barbaro
,J.A.Caballero
.
(2013)
.
"Neutrino and antineutrino CCQE scattering in the SuperScaling Approximation from MiniBooNE to NOMAD energies"
.
Maria B. Barbaro
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا