No Arabic abstract
We present a thermometry scheme to extract the temperature of a 2DEG by monitoring the charge occupation of a weakly tunnel-coupled thermometer quantum dot using a quantum point contact detector. Electronic temperatures between 97 mK and 307 mK are measured by this method with an accuracy of up to 3 mK, and agree with those obtained by measuring transport through a quantum dot. The thermometer does not pass a current through the 2DEG, and can be incorporated as an add-on to measure the temperature simultaneously with another operating device. Further, the tuning is independent of temperature.
We present radio-frequency thermometry based on a tunnel junction between a superconductor and proximitized normal metal. It allows operation in a wide range of biasing conditions. We demonstrate that the standard finite-bias quasiparticle tunneling thermometer suffers from large dissipation and loss of sensitivity at low temperatures, whereas thermometry based on zero bias anomaly avoids both these problems. For these reasons the latter method is suitable down to lower temperatures, here to about 25 mK. Both thermometers are shown to measure the same local temperature of the electrons in the normal metal in the range of their applicability.
We report charge sensing measurements of a silicon metal-oxide-semiconductor quantum dot using a single-electron transistor as a charge sensor with dynamic feedback control. Using digitallycontrolled feedback, the sensor exhibits sensitive and robust detection of the charge state of the quantum dot, even in the presence of charge drifts and random charge rearrangements. The sensor enables the occupancy of the quantum dot to be probed down to the single electron level.
A cryogenic quantum dot thermometer is calibrated and operated using only a single non-galvanic gate connection. The thermometer is probed with radio-frequency reflectometry and calibrated by fitting a physical model to the phase of the reflected radio-frequency signal taken at temperatures across a small range. Thermometry of the source and drain reservoirs of the dot is then performed by fitting the calibrated physical model to new phase data. The thermometer can operate at the transition between thermally broadened and lifetime broadened regimes, and outside the temperatures used in calibration. Electron thermometry was performed at temperatures between $3.0,mathrm{K}$ and $1.0,mathrm{K}$, in both a $1,mathrm{K}$ cryostat and a dilution refrigerator. The experimental setup allows fast electron temperature readout with a sensitivity of $4.0pm0.3 , mathrm{mK}/sqrt{mathrm{Hz}}$, at Kelvin temperatures. The non-galvanic calibration process gives a readout of physical parameters, such as the quantum dot lever arm. The demodulator used for reflectometry readout is readily available and very affordable.
The advanced nanoscale integration available in silicon complementary metal-oxide-semiconductor (CMOS) technology provides a key motivation for its use in spin-based quantum computing applications. Initial demonstrations of quantum dot formation and spin blockade in CMOS foundry-compatible devices are encouraging, but results are yet to match the control of individual electrons demonstrated in university-fabricated multi-gate designs. We show here that the charge state of quantum dots formed in a CMOS nanowire device can be sensed by using floating gates to electrostatically couple it to a remote single electron transistor (SET) formed in an adjacent nanowire. By biasing the nanowire and gates of the remote SET with respect to the nanowire hosting the quantum dots, we controllably form ancillary quantum dots under the floating gates, thus enabling the demonstration of independent control over charge transitions in a quadruple (2x2) quantum dot array. This device overcomes the limitations associated with measurements based on tunnelling transport through the dots and permits the sensing of all charge transitions, down to the last electron in each dot. We use effective mass theory to investigate the necessary optimization of the device parameters in order to achieve the tunnel rates required for spin-based quantum computation.
We demonstrate dispersive readout of individual charge states in a gate-defined few-electron quantum dot in bilayer graphene. We employ a radio frequency reflectometry circuit, where an LC resonator with a resonance frequency close to 280 MHz is directly coupled to an ohmic contact of the quantum dot device. The detection scheme based on changes in the quantum capacitance operates over a wide gate-voltage range and allows to probe excited states down to the single-electron regime. Crucially, the presented sensing technique avoids the use of an additional, capacitively coupled quantum device such as a quantum point contact or single electron transistor, making dispersive sensing particularly interesting for gate-defined graphene quantum dots.