Do you want to publish a course? Click here

Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry

131   0   0.0 ( 0 )
 Added by Martino Poggio
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using an optimally coupled nanometer-scale superconducting quantum interference device, we measure the magnetic flux originating from an individual ferromagnetic Ni nanotube attached to a Si cantilever. At the same time, we detect the nanotubes volume magnetization using torque magnetometry. We observe both the predicted reversible and irreversible reversal processes. A detailed comparison with micromagnetic simulations suggests that vortex-like states are formed in different segments of the individual nanotube. Such stray-field free states are interesting for memory applications and non-invasive sensing.



rate research

Read More

We report here the results of two-dimensional electron gas based micro-Hall magnetometry measurements and micromagnetic simulations of dipolar coupled nanomagnets of Ni80Fe20 arranged in a double ring-like geometry. We observe that although magnetic force microscopy images exhibit single domain like magnetic states for the nanostructures, their reversal processes may undergo complex behavior. The details of such reversal behavior is observed as specific features in micro-Hall magnetometry data which compares well with the micromagnetic simulation data.
We report results of a magnetic characterization of [Cu$_{30}$Ni$_{70}$(6nm)]$_{20}$ (x=1-7nm) superlattices using Polarized Neutron Reflectometry (PNR) and SQUID magnetometry. The study has shown that the magnetic moment of the structures growths almost linearly from H = 0 to H$_{sat}$ = 1.3kOe which is an indirect evidence of antiferromagnetic (AF) coupling of the magnetic moments in neighbouring layers. PNR, however, did not detect any in-plane AF coupling. Taking into account the out-of-plane easy axis of the Cu$_{30}$Ni$_{70}$ layers, this may mean that only the out-of-plane component of the magnetic moments are AF coupled.
108 - J.P. Davis , D. Vick , D.C. Fortin 2009
Magnetic torque is used to actuate nano-torsional resonators, which are fabricated by focused-ion-beam milling of permalloy coated silicon nitride membranes. Optical interferometry is used to measure the mechanical response of two torsion modes at resonance, which is proportional to the magnetization vector of the nanomagnetic volume. By varying the bias magnetic field, the magnetic behavior can be measured with excellent sensitivity ($approx 10^8 mu_B$) for single magnetic elements.
Nanophotonic optomechanical devices allow observation of nanoscale vibrations with sensitivity that has dramatically advanced metrology of nanomechanical structures [1-9] and has the potential to impact studies of nanoscale physical systems in a similar manner [10, 11]. Here we demonstrate this potential with a nanophotonic optomechanical torque magnetometer and radiofrequency (RF) magnetic susceptometer. Exquisite readout sensitivity provided by a nanocavity integrated within a torsional nanomechanical resonator enables observations of the unique net magnetization and RF-driven responses of single mesoscopic magnetic structures in ambient conditions. The magnetic moment resolution is sufficient for observation of Barkhausen steps in the magnetic hysteresis of a lithographically patterned permalloy island [12]. In addition, significantly enhanced RF susceptibility is found over narrow field ranges and attributed to thermally assisted driven hopping of a magnetic vortex core between neighboring pinning sites [13]. The on-chip magneto-susceptometer scheme offers a promising path to powerful integrated cavity optomechanical devices for quantitative characterization of magnetic micro- and nanosystems in science and technology.
Anisotropic properties of superconducting MgB2 obtained by torque magnetometry are compared to theoretical predictions, concentrating on two issues. Firstly, the angular dependence of Hc2 is shown to deviate close to Tc from the dependence assumed by anisotropic Ginzburg-Landau theory. Secondly, from the evaluation of torque vs angle curves it is concluded that the anisotropy of the penetration depth gamma_lambda has to be substantially higher at low temperature than theoretical estimates, at least in fields higher than 0.2 T.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا