No Arabic abstract
We observe the emergence of a disorder-induced insulating state in a strongly interacting atomic Fermi gas trapped in an optical lattice. This closed quantum system free of a thermal reservoir realizes the disordered Fermi-Hubbard model, which is a minimal model for strongly correlated electronic solids. In measurements of disorder-induced localization obtained via mass transport, we detect interaction-driven delocalization and localization that persists as the temperature of the gas is raised. These behaviors are consistent with many-body localization, which is a novel paradigm for understanding localization in interacting quantum systems at non-zero temperature.
Motivated by the question of whether disorder is a prerequisite for localization to occur in quantum many-body systems, we study a frustrated one-dimensional spin chain, which supports localized many-body eigenstates in the absence of disorder. When the system is prepared in an initial state with one domain wall, it exhibits characteristic signatures of quasi-many-body localization (quasi- MBL), including initial state memory retention, an exponentially increasing lifetime with enlarging the size of the system, a logarithmic growth of entanglement entropy, and a logarithmic light cone of an out-of-time-ordered correlator. We further show that the localized many-body eigenstates can be manipulated as pseudospin-1/2s and thus could potentially serve as qubits. Our findings suggest a new route of using frustration to access quasi-MBL and preserve quantum coherence.
The interplay of strong interaction and strong disorder, as contained in the Anderson-Hubbard model, is addressed using two non-perturbative numerical methods: the Lanczos algorithm in the grand canonical ensemble at zero temperature and Quantum Monte Carlo. We find distinctive evidence for a zero-energy anomaly which is robust upon variation of doping, disorder and interaction strength. Its similarities to, and differences from, pseudogap formation in other contexts, including perturbative treatments of interactions and disorder, classical theories of localized charges, and in the clean Hubbard model, are discussed.
Understanding the collective behavior of strongly correlated electrons in materials remains a central problem in many-particle quantum physics. A minimal description of these systems is provided by the disordered Fermi-Hubbard model (DFHM), which incorporates the interplay of motion in a disordered lattice with local inter-particle interactions. Despite its minimal elements, many dynamical properties of the DFHM are not well understood, owing to the complexity of systems combining out-of-equilibrium behavior, interactions, and disorder in higher spatial dimensions. Here, we study the relaxation dynamics of doubly occupied lattice sites in the three-dimensional (3D) DFHM using interaction-quench measurements on a quantum simulator composed of fermionic atoms confined in an optical lattice. In addition to observing the widely studied effect of disorder inhibiting relaxation, we find that the cooperation between strong interactions and disorder also leads to the emergence of a dynamical regime characterized by textit{disorder-enhanced} relaxation. To support these results, we develop an approximate numerical method and a phenomenological model that each capture the essential physics of the decay dynamics. Our results provide a theoretical framework for a previously inaccessible regime of the DFHM and demonstrate the ability of quantum simulators to enable understanding of complex many-body systems through minimal models.
We analyze the complex interplay of the strong correlations and impurities in a high temperature superconductor and show that both the nature and degree of the inhomogeneities at zero temperature in the local order parameters change drastically from what are obtained in a simple Hartree-Fock-Bogoliubov theory. While both the strong electronic repulsions and disorder contribute to the nanoscale inhomogeneity in the population of charge-carriers, we find them to compete with each other leading to a relatively smooth variation of the local density. Our self-consistent calculations modify the spatial fluctuations in the pairing amplitude by suppressing all the double-occupancy within a Gutzwiller formalism and prohibit the formation of distinct superconducting-`islands. In contrast, presence of such `islands controls the outcome if strong correlations are neglected. The reorganization of the spatial structures in the Gutzwiller method makes these superconductors surprisingly insensitive to the impurities. This is illustrated by a very weak decay of superfluid stiffness, off-diagonal long range order and local density of states up to a large disorder strength. Exploring the origin of such a robustness we conclude that the underlying one-particle normal states reshape in a rich manner, such that the superconductor formed by pairing these states experiences a weaker but spatially correlated effective disorder. Such a route to superconductivity is evocative of Andersons theorem. Our results capture the key experimental trends in the cuprates.
Experimental realizations of disorder in optical lattices generate a distribution of the Bose-Hubbard (BH) parameters, like on-site potentials, hopping strengths, and interaction energies. We analyze this distribution for bosons in a bichromatic quasi-periodic potential by determining the generalized Wannier functions and calculating the corresponding BH parameters. Using a local mean-field cluster analysis, we study the effect of the corresponding disorder on the phase diagrams. We find a substantial amount of disorder in the hopping strengths, which produces strong deviations from the phase diagram of the disordered BH model with solely random on-site potentials.