Do you want to publish a course? Click here

Comparison of charge modulations in La$_{1.875}$Ba$_{0.125}$CuO$_4$ and YBa$_2$Cu$_3$O$_{6.6}$

135   0   0.0 ( 0 )
 Added by Vivek Thampy
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A charge modulation has recently been reported in (Y,Nd)Ba$_2$Cu$_3$O$_{6+x}$ [Ghiringhelli {em et al.} Science 337, 821 (2013)]. Here we report Cu $L_3$ edge soft x-ray scattering studies comparing the lattice modulation associated with the charge modulation in YBa$_2$Cu$_3$O$_{6.6}$ with that associated with the well known charge and spin stripe order in La$_{1.875}$Ba$_{0.125}$CuO$_4$. We find that the correlation length in the CuO$_2$ plane is isotropic in both cases, and is $259 pm 9$ AA for La$_{1.875}$Ba$_{0.125}$CuO$_4$ and $55 pm 15$ AA for YBa$_2$Cu$_3$O$_{6.6}$. Assuming weak inter-planar correlations of the charge ordering in both compounds, we conclude that the order parameters of the lattice modulations in La$_{1.875}$Ba$_{0.125}$CuO$_4$ and YBa$_2$Cu$_3$O$_{6.6}$ are of the same order of magnitude.



rate research

Read More

The occurrence of charge-density-wave (CDW) order in underdoped cuprates is now well established, although the precise nature of the CDW and its relationship with superconductivity is not. Theoretical proposals include contrasting ideas such as that pairing may be driven by CDW fluctuations or that static CDWs may intertwine with a spatially-modulated superconducting wave function. We test the dynamics of CDW order in La$_{1.825}$Ba$_{0.125}$CuO$_4$ by using x-ray photon correlation spectroscopy (XPCS) at the CDW wave vector, detected resonantly at the Cu $L_3$-edge. We find that the CDW domains are strikingly static, with no evidence of significant fluctuations up to 2, icefrac{3}{4} hours. We discuss the implications of these results for some of the competing theories.
We report combined soft and hard x-ray scattering studies of the electronic and lattice modulations associated with stripe order in La$_{1.875}$Ba$_{0.125}$CuO$_4$ and La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$. We find that the amplitude of both the electronic modulation of the hole density and the strain modulation of the lattice is significantly larger in La$_{1.875}$Ba$_{0.125}$CuO$_4$ than in La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ and is also better correlated. The in-plane correlation lengths are isotropic in each case; for La$_{1.875}$Ba$_{0.125}$CuO$_4$, $xi^{hole}=255pm 5$ AA whereas for La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$F, $xi^{hole}=111pm 7$ AA. We find that the modulations are temperature independent in La$_{1.875}$Ba$_{0.125}$CuO$_4$ in the low temperature tetragonal phase. In contrast, in La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$, the amplitude grows smoothly from zero, beginning 13 K below the LTT phase transition. We speculate that the reduced average tilt angle in La$_{1.875}$Ba$_{0.125}$CuO$_4$ results in reduced charge localization and incoherent pinning, leading to the longer correlation length and enhanced periodic modulation amplitude.
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic x-ray scattering (RIXS) to follow the evolution of charge correlations in the canonical stripe ordered cuprate La$_{1.875}$Ba$_{0.125}$CuO$_{4}$ (LBCO~$1/8$) across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.
126 - H. Kimura , Y. Noda , H. Goka 2004
Soft phonon behavior associated with a structural phase transition from the low-temperature-orthorhombic (LTO) phase ($Bmab$ symmetry) to the low-temperature-tetragonal (LTT) phase ($P4_{2}/ncm$ symmetry) was investigated in La$_{1.875}$Ba$_{0.125}$CuO$_{4}$ using neutron scattering. As temperature decreases, the TO-mode at $Z$-point softens and approaches to zero energy around $T_{rm d2}=62$ K, where the LTO -- LTT transition occurs. Below $T_{rm d2}$, the phonon hardens quite rapidly and its energy almost saturates below 50 K. At $T_{rm d2}$, the energy dispersion of the soft phonon along in-plane direction significantly changes while the dispersion along out-of-plane direction is almost temperature independent. Coexistence between the LTO phase and the LTT phase, seen in both the soft phonon spectra and the peak profiles of Bragg reflection, is discussed in context of the order of structural phase transitions.
The reflectivity $R (omega)$ of both the $ab$ plane and the c axis of two single crystals of La$_{1.875}$Ba$_{0.125-y}$Sr$_{y}$CuO$_4$ has been measured down to 5 cm$^{-1}$, using coherent synchrotron radiation below 30 cm$^{-1}$. For $y$ = 0.085, a Josephson Plasma Resonance is detected at $T ll T_c$ = 31 K in $R_{c} (omega)$, and a far-infrared peak (FIP) appears in the optical conductivity below 50 K, where non-static charge ordering (CO) is reported by X-ray scattering. For $y$ = 0.05 ($T_c$ = 10 K), a FIP is observed in the low-temperature tetragonal phase below the ordering temperature $T_{CO}$. At 1/8 doping the peak frequency scales linearly with $T_{CO}$, confirming that the FIP is an infrared signature of CO, either static or fluctuating.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا