No Arabic abstract
Black Hole Mass (M_BH) estimation in quasars, especially at high redshift, involves use of single epoch spectra with s/n and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled with an estimate of the radius of the broad line region this yields M_BH. The radius of the broad line region (BLR) may be inferred from an extrapolation of the correlation between source luminosity and reverberation derived r_BLR measures (the so-called Kaspi relation involving about 60 low z sources). We are exploring a different method for estimating r_BLR directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r_BLR estimates that come from our method and from reverberation mapping. Our photoionization method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (AlIII1860/SiIII]1892, CIV1549/AlIII1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter and r_BLR and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r_BLR values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M_BH for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H beta, therefore providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.
A method is proposed for measuring the size of the broad emission line region (BLR) in quasars using broadband photometric data. A feasibility study, based on numerical simulations, points to the advantages and pitfalls associated with this approach. The method is applied to a subset of the Palomar-Green quasar sample for which independent BLR size measurements are available. An agreement is found between the results of the photometric method and the spectroscopic reverberation mapping technique. Implications for the measurement of BLR sizes and black hole masses for numerous quasars in the era of large surveys are discussed.
We present high S/N UV spectra for eight quasars at $zsim3$ obtained with VLT/FORS. The spectra enable us to analyze in detail the strongest emission features in the rest-frame range 1400-2000 AA of each source (ciii, siiii, aliii, siii, civ and siiv). Previous work indicates that a component of these lines is emitted in a region with well-defined properties i.e., a high density and low ionization emitting region). Flux ratios aliii/siiii, civ/aliii, siiv/siiii, civ/siiv and siii/siiii for this region permit us to strongly constrain electron density, ionization parameter and metallicity through the use of diagnostic maps built from {sc CLOUDY} simulations. Reliable estimates of the product density times ionization parameter allow us to derive the radius of the broad line region rb from the definition of the ionization parameter. The rb estimate and the assumption of virialized motions in the line emitting gas yields an estimate for black hole mass. We compare our results with estimates obtained from the rb -- luminosity correlation customarily employed to estimate black hole masses of high redshift quasars.
When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting region. Chromatic changes are expected to be observed in the continuum while the emission lines should be deformed as a function of the size, geometry and kinematics of the regions from which they originate. Microlensing of the emission lines has been reported only in a handful of systems so far. In this paper we search for microlensing deformations of the optical spectra of pairs of images in 17 lensed quasars. This sample is composed of 13 pairs of previously unpublished spectra and four pairs of spectra from literature. Our analysis is based on a spectral decomposition technique which allows us to isolate the microlensed fraction of the flux independently of a detailed modeling of the quasar emission lines. Using this technique, we detect microlensing of the continuum in 85% of the systems. Among them, 80% show microlensing of the broad emission lines. Focusing on the most common lines in our spectra (CIII] and MgII) we detect microlensing of either the blue or the red wing, or of both wings with the same amplitude. This observation implies that the broad line region is not in general spherically symmetric. In addition, the frequent detection of microlensing of the blue and red wings independently but not simultaneously with a different amplitude, does not support existing microlensing simulations of a biconical outflow. Our analysis also provides the intrinsic flux ratio between the lensed images and the magnitude of the microlensing affecting the continuum. These two quantities are particularly relevant for the determination of the fraction of matter in clumpy form in galaxies and for the detection of dark matter substructures via the identification of flux ratio anomalies.
A detailed analysis of the data from a high sampling rate, multi-month reverberation mapping campaign, undertaken primarily at MDM Observatory with supporting observations from telescopes around the world, reveals that the Hbeta emission region within the broad line regions (BLRs) of several nearby AGNs exhibit a variety of kinematic behaviors. While the primary goal of this campaign was to obtain either new or improved Hbeta reverberation lag measurements for several relatively low luminosity AGNs (presented in a separate work), we were also able to unambiguously reconstruct velocity-resolved reverberation signals from a subset of our targets. Through high cadence spectroscopic monitoring of the optical continuum and broad Hbeta emission line variations observed in the nuclear regions of NGC 3227, NGC 3516, and NGC 5548, we clearly see evidence for outflowing, infalling, and virialized BLR gas motions, respectively.
We report the results of a multi-year spectroscopic and photometric monitoring campaign of two luminous quasars, PG~0923+201 and PG~1001+291, both located at the high-luminosity end of the broad-line region (BLR) size-luminosity relation with optical luminosities above $10^{45}~{rm erg~s^{-1}}$. PG~0923+201 is for the first time monitored, and PG~1001+291 was previously monitored but our campaign has a much longer temporal baseline. We detect time lags of variations of the broad H$beta$, H$gamma$, Fe {sc ii} lines with respect to those of the 5100~{AA} continuum. The velocity-resolved delay map of H$beta$ in PG~0923+201 indicates a complicated structure with a mix of Keplerian disk-like motion and outflow, and the map of H$beta$ in PG~1001+291 shows a signature of Keplerian disk-like motion. Assuming a virial factor of $f_{rm BLR}=1$ and FWHM line widths, we measure the black hole mass to be $118_{-16}^{+11}times 10^7 M_{odot}$ for PG~0923+201 and $3.33_{-0.54}^{+0.62}times 10^7 M_{odot}$ for PG~1001+291. Their respective accretion rates are estimated to be $0.21_{-0.07}^{+0.06} times L_{rm Edd},c^{-2}$ and $679_{-227}^{+259}times L_{rm Edd},c^{-2}$, indicating that PG~0923+201 is a sub-Eddington accretor and PG~1001+291 is a super-Eddington accretor. While the H$beta$ time lag of PG~0923+201 agrees with the size-luminosity relation, the time lag of PG~1001+291 shows a significant deviation, confirming that in high-luminosity AGN the BLR size depends on both luminosity and Eddington ratio. Black hole mass estimates from single AGN spectra will be over-estimated at high luminosities and redshifts if this effect is not taken into account.