Do you want to publish a course? Click here

Pseudogap formation above the superconducting dome in iron-pnictides

141   0   0.0 ( 0 )
 Added by Takahiro Shimojima
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nature of the pseudogap in high transition temperature (high-Tc) superconducting cuprates has been a major issue in condensed matter physics. It is still unclear whether the high-Tc superconductivity can be universally associated with the pseudogap formation. Here we provide direct evidence of the existence of the pseudogap phase via angle-resolved photoemission spectroscopy in another family of high-Tc superconductor, iron-pnictides. Our results reveal a composition dependent pseudogap formation in the multi-band electronic structure of BaFe2(As1-xPx)2. The pseudogap develops well above the magnetostructural transition for low x, persists above the nonmagnetic superconducting dome for optimal x and is destroyed for x ~ 0.6, thus showing a notable similarity with cuprates. In addition, the pseudogap formation is accompanied by inequivalent energy shifts in xz/yz orbitals of iron atoms, indicative of a peculiar iron orbital ordering which breaks the four-fold rotational symmetry.



rate research

Read More

Using both two orbital and five orbital models, we investigate the quasiparticle interference (QPI) patterns in the superconducting (SC) state of iron-based superconductors. We compare the results for nonmagnetic and magnetic impurities in sign-changed s-wave $cos(k_x)cdotcos(k_y)$ and sign-unchanged $|cos(k_x)cdotcos(k_y)|$ SC states. While the patterns strongly depend on the chosen band structures, the sensitivity of peaks around $(pmpi,0)$ and $(0,pmpi)$ wavevectors on magnetic or non-magnetic impurity, and sign change or sign unchanged SC orders is common in two models. Our results strongly suggest that QPI may provide direct information of band structures and evidence of the pairing symmetry in the SC states.
High-temperature superconductivity in iron-arsenic materials (pnictides) near an antiferromagnetic phase raises the possibility of spin-fluctuation-mediated pairing. However, the interplay between antiferromagnetic fluctuations and superconductivity remains unclear in the underdoped regime, which is closer to the antiferromagnetic phase. Here we report that the superconducting gap of the underdoped pnictides scales linearly with the transition temperature, and that a distinct pseudogap coexisting with the SC gap develops on underdoping. This pseudogap occurs on Fermi surface sheets connected by the antiferromagnetic wavevector, where the superconducting pairing is stronger as well, suggesting that antiferromagnetic fluctuations drive both the pseudogap and superconductivity. Interestingly, we found that the pseudogap and the spectral lineshape vary with the Fermi surface quasi-nesting conditions in a fashion that shares similarities with the nodal-antinodal dichotomous behaviour observed in underdoped copper oxide superconductors.
133 - Y. I. Joe , X. M. Chen , P. Ghaemi 2013
Superconductivity (SC) in so-called unconventional superconductors is nearly always found in the vicinity of another ordered state, such as antiferromagnetism, charge density wave (CDW), or stripe order. This suggests a fundamental connection between SC and fluctuations in some other order parameter. To better understand this connection, we used high-pressure x-ray scattering to directly study the CDW order in the layered dichalcogenide TiSe2, which was previously shown to exhibit SC when the CDW is suppressed by pressure [1] or intercalation of Cu atoms [2]. We succeeded in suppressing the CDW fully to zero temperature, establishing for the first time the existence of a quantum critical point (QCP) at Pc = 5.1 +/- 0.2 GPa, which is more than 1 GPa beyond the end of the SC region. Unexpectedly, at P = 3 GPa we observed a reentrant, weakly first order, incommensurate phase, indicating the presence of a Lifshitz tricritical point somewhere above the superconducting dome. Our study suggests that SC in TiSe2 may not be connected to the QCP itself, but to the formation of CDW domain walls.
We use point contact spectroscopy to probe $rm{AEFe_2As_2}$ ($rm{AE=Ca, Sr, Ba}$) and $rm{Fe_{1+y}Te}$. For $rm{AE=Sr, Ba}$ we detect orbital fluctuations above $T_S$ while for AE=Ca these fluctuations start below $T_S$. Co doping preserves the orbital fluctuations while K doping suppresses it. The fluctuations are only seen at those dopings and temperatures where an in-plane resistive anisotropy is known to exist. We predict an in-plane resistive anisotropy of $rm{Fe_{1+y}Te}$ above $T_S$. Our data are examined in light of the recent work by W.-C. Lee and P. Phillips (arXiv:1110.5917v2). We also study how joule heating in the PCS junctions impacts the spectra. Spectroscopic information is only obtained from those PCS junctions that are free of heating effects while those PCS junctions that are in the thermal regime display bulk resistivity phenomenon.
The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this pre-formed pairs scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the pseudogap, two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the proper pseudogap - characterized by a checker board pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا