No Arabic abstract
The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this pre-formed pairs scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the pseudogap, two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the proper pseudogap - characterized by a checker board pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.
In this brief report an attempt is made for a mise-a-point of the subject of the phase fluctuations of the superconducting order parameter above Tc in cuprates, particularly as they appear in underdoped compounds. Measurements of torque magnetometry, Nernst effect and isothermal diamagnetic magnetization curves published in the last years are taken into consideration. Although by different experimental approaches and in different magnetic field ranges it can be stated that vortex-antivortex excitations and phase fluctuations among islands of local non-zero order parameter lacking of long range coherence do occur in a relevant temperature range above Tc, particularly in underdoped compounds. The role of the diamagnetic magnetization curves on approaching Tc from above in opening the field with clear signature is remarked, while enlightening comparison with other approaches appear possible.
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and the temperature Tc above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0) which is found to be be quite similar to Hc(0) and to increase with hole doping. Studies of the incidence of disorder on both Tc and T* allow us to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.
We have studied the momentum dependence of the energy gap of Bi2(Sr,R)2CuOy by angleresolved photoemission spectroscopy (ARPES), particularly focusing on the difference between R=La and Eu. By comparing the gap function and characteristic temperatures between the two sets of samples, we show that there exist three distinct energy scales, {Delta}pg, {Delta}sc0, and {Delta}eff sc0, which correspond to T* (pseudogap temperature), Tonset (onset temperature of fluctuating superconductivity), and Tc (critical temperature of coherent superconductivity). The results not only support the existence of a pseudogap state below T* that competes with superconductivity but also the duality of competition and superconducting fluctuation at momenta around the antinode below Tonset.
Angle-resolved photoemission on underdoped La$_{1.895}$Sr$_{0.105}$CuO$_4$ reveals that in the pseudogap phase, the dispersion has two branches located above and below the Fermi level with a minimum at the Fermi momentum. This is characteristic of the Bogoliubov dispersion in the superconducting state. We also observe that the superconducting and pseudogaps have the same d-wave form with the same amplitude. Our observations provide direct evidence for preformed Cooper pairs, implying that the pseudogap phase is a precursor to superconductivity.
The nature of the pseudogap in high transition temperature (high-Tc) superconducting cuprates has been a major issue in condensed matter physics. It is still unclear whether the high-Tc superconductivity can be universally associated with the pseudogap formation. Here we provide direct evidence of the existence of the pseudogap phase via angle-resolved photoemission spectroscopy in another family of high-Tc superconductor, iron-pnictides. Our results reveal a composition dependent pseudogap formation in the multi-band electronic structure of BaFe2(As1-xPx)2. The pseudogap develops well above the magnetostructural transition for low x, persists above the nonmagnetic superconducting dome for optimal x and is destroyed for x ~ 0.6, thus showing a notable similarity with cuprates. In addition, the pseudogap formation is accompanied by inequivalent energy shifts in xz/yz orbitals of iron atoms, indicative of a peculiar iron orbital ordering which breaks the four-fold rotational symmetry.