Do you want to publish a course? Click here

Experimental aspects of heat conduction beyond Fourier

113   0   0.0 ( 0 )
 Added by Peter Van
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Heat conduction experiments are performed in order to identify effects beyond Fourier. Two experimental setups are discussed. First, a simple experiment by a heterogeneous material is investigated from the point of view of generalized heat conduction, then the classical laser flash method is analysed.



rate research

Read More

61 - Giulio Casati , Baowen LI 2005
In this paper we give a brief review of the relation between microscopic dynamical properties and the Fourier law of heat conduction as well as the connection between anomalous conduction and anomalous diffusion. We then discuss the possibility to control the heat flow.
For an one-dimensional (1D) momentum conserving system, intensive studies have shown that generally its heat current autocorrelation function (HCAF) tends to decay in a power-law manner and results in the breakdown of the Fourier heat conduction law in the thermodynamic limit. This has been recognized to be a dominant hydrodynamic effect. Here we show that, instead, the kinetic effect can be dominant in some cases and leads to the Fourier law. Usually the HCAF undergoes a fast decaying kinetic stage followed by a long, slowly decaying hydrodynamic tail. In a finite range of the system size, we find that whether the system follows the Fourier law depends on whether the kinetic stage dominates. Our study is illustrated by the 1D diatomic gas model, with which the HCAF is derived analytically and verified numerically by molecular dynamics simulations.
251 - Samy Merabia 2011
We investigate the problem of heat conduction across a molecular junction connecting two nanoparticles, both in vacuum and in a liquid environment, using classical molecular dynamics simulations. In vacuum, the well-known result of a length independent conductance is recovered; its precise value, however, is found to depend sensitively on the overlap between the vibrational spectrum of the junction and the density of states of the nanoparticles that act as thermal contacts. In a liquid environment, the conductance is constant up to a crossover length, above which a standard Fourier regime is recovered.
Aluminum scandium nitride alloy (Al1-xScxN) is regarded as a promising material for high-performance acoustic devices used in wireless communication systems. Phonon scattering and heat conduction processes govern the energy dissipation in acoustic resonators, ultimately determining their performance quality. This work reports, for the first time, on phonon scattering processes and thermal conductivity in Al1-xScxN alloys with the Sc content (x) up to 0.26. The thermal conductivity measured presents a descending trend with increasing x. Temperature-dependent measurements show an increase in thermal conductivity as the temperature increases at temperatures below 200K, followed by a plateau at higher temperatures (T> 200K). Application of a virtual crystal phonon conduction model allows us to elucidate the effects of boundary and alloy scattering on the observed thermal conductivity behaviors. We further demonstrate that the alloy scattering is caused mainly by strain-field difference, and less by the atomic mass difference between ScN and AlN, which is in contrast to the well-studied Al1-xGaxN and SixGe1-x alloy systems where atomic mass difference dominates the alloy scattering. This work studies and provides the quantitative knowledge for phonon scattering and the thermal conductivity in Al1-xScxN, paving the way for future investigation of materials and design of acoustic devices.
Understanding microscopic heat conduction in thin films is important for nano/micro heat transfer and thermal management for advanced electronics. As the thickness of thin films is comparable to or shorter than a phonon wavelength, phonon dispersion relations and transport properties are significantly modulated, which should be taken into account for heat conduction in thin films. Although phonon confinement and depletion effects have been considered, it should be emphasized that surface-localized phonons (surface phonons) arise whose influence on heat conduction may not be negligible due to the high surface-to-volume ratio. However, the role of surface phonons in heat conduction has received little attention thus far. In the present work, we performed anharmonic lattice dynamics calculations to investigate the thickness and temperature dependence of in-plane thermal conductivity of silicon thin films with sub-10-nm thickness in terms of surface phonons. Through systematic analysis of the influences of surface phonons, we found that anharmonic coupling between surface and internal phonons localized in thin films significantly suppresses overall in-plane heat conduction in thin films. We also discovered that specific low-frequency surface phonons significantly contribute to surface--internal phonon scattering and heat conduction suppression. Our findings are beneficial for the thermal management of electronics and phononic devices and may lead to surface phonon engineering for thermal conductivity control.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا