Do you want to publish a course? Click here

co-Semi-analytic functors

166   0   0.0 ( 0 )
 Added by Marek Zawadowski
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We characterize the category of co-semi-analytic functors and describe an action of semi-analytic functors on co-semi-analytic functors.



rate research

Read More

We describe an abstract 2-categorical setting to study various notions of polynomial and analytic functors and monads.
325 - Rina Anno 2013
This paper has been withdrawn and replaced by arXiv:1309.5035. In this paper we describe some examples of so called spherical functors between triangulated categories, which generalize the notion of a spherical object. We also give sufficient conditions for a collection of spherical functors to yield a weak representation of the category of tangles, and prove a structure theorem for such representations under certain restrictions.
In this paper, we give precise mathematical form to the idea of a structure whose data and axioms are faithfully represented by a graphical calculus; some prominent examples are operads, polycategories, properads, and PROPs. Building on the established presentation of such structures as algebras for monads on presheaf categories, we describe a characteristic property of the associated monads---the shapeliness of the title---which says that any two operations of the same shape agree. An important part of this work is the study of analytic functors between presheaf categories, which are a common generalisation of Joyals analytic endofunctors on sets and of the parametric right adjoint functors on presheaf categories introduced by Diers and studied by Carboni--Johnstone, Leinster and Weber. Our shapely monads will be found among the analytic endofunctors, and may be characterised as the submonads of a universal analytic monad with exactly one operation of each shape. In fact, shapeliness also gives a way to define the data and axioms of a structure directly from its graphical calculus, by generating a free shapely monad on the basic operations of the calculus. In this paper we do this for some of the examples listed above; in future work, we intend to do so for graphical calculi such as Milners bigraphs, Lafonts interaction nets, or Girards multiplicative proof nets, thereby obtaining canonical notions of denotational model.
225 - Nguyen Tien Quang 2009
Each Gr-functor of the type $(varphi,f)$ of a Gr-category of the type $(Pi,C)$ has the obstruction be an element $overline{k}in H^3(Pi,C).$ When this obstruction vanishes, there exists a bijection between congruence classes of Gr-functors of the type $(varphi,f)$ and the cohomology group $H^2(Pi,C).$ Then the relation of Gr-category theory and the group extension problem can be established and used to prove that each Gr-category is Gr-equivalent to a strict one.
126 - Yasuhide Numata 2016
In this paper, we consider categories with colored morphisms and functors such that morphisms assigned to morphisms with a common color have a common color. In this paper, we construct a morphism-colored functor such that any morphism-colored functor from a given small morphism-colored groupoid to any discrete morphism-colored category factors through it. We also apply the main result to a schemoid constructed from a Hamming scheme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا