Do you want to publish a course? Click here

Spherical functors

331   0   0.0 ( 0 )
 Added by Rina Anno
 Publication date 2013
  fields
and research's language is English
 Authors Rina Anno




Ask ChatGPT about the research

This paper has been withdrawn and replaced by arXiv:1309.5035. In this paper we describe some examples of so called spherical functors between triangulated categories, which generalize the notion of a spherical object. We also give sufficient conditions for a collection of spherical functors to yield a weak representation of the category of tangles, and prove a structure theorem for such representations under certain restrictions.



rate research

Read More

Given a DG-category A we introduce the bar category of modules Modbar(A). It is a DG-enhancement of the derived category D(A) of A which is isomorphic to the category of DG A-modules with A-infinity morphisms between them. However, it is defined intrinsically in the language of DG-categories and requires no complex machinery or sign conventions of A-infinity categories. We define for these bar categories Tensor and Hom bifunctors, dualisation functors, and a convolution of twisted complexes. The intended application is to working with DG-bimodules as enhancements of exact functors between triangulated categories. As a demonstration we develop homotopy adjunction theory for tensor functors between derived categories of DG-categories. It allows us to show in an enhanced setting that given a functor F with left and right adjoints L and R the functorial complex $FR rightarrow FRFR rightarrow FR rightarrow Id$ lifts to a canonical twisted complex whose convolution is the square of the spherical twist of F. We then write down four induced functorial Postnikov towers computing this convolution.
For two DG-categories A and B we define the notion of a spherical Morita quasi-functor A -> B. We construct its associated autoequivalences: the twist T of D(B) and the co-twist F of D(A). We give powerful sufficiency criteria for a quasi-functor to be spherical and for the twists associated to a collection of spherical quasi-functors to braid. Using the framework of DG-enhanced triangulated categories, we translate all of the above to Fourier-Mukai transforms between the derived categories of algebraic varieties. This is a broad generalisation of the results on spherical objects in [ST01] and on spherical functors in [Ann07]. In fact, this paper replaces [Ann07], which has a fatal gap in the proof of its main theorem. Though conceptually correct, the proof was impossible to fix within the framework of triangulated categories.
167 - Marek Zawadowski 2013
We characterize the category of co-semi-analytic functors and describe an action of semi-analytic functors on co-semi-analytic functors.
230 - Nguyen Tien Quang 2009
Each Gr-functor of the type $(varphi,f)$ of a Gr-category of the type $(Pi,C)$ has the obstruction be an element $overline{k}in H^3(Pi,C).$ When this obstruction vanishes, there exists a bijection between congruence classes of Gr-functors of the type $(varphi,f)$ and the cohomology group $H^2(Pi,C).$ Then the relation of Gr-category theory and the group extension problem can be established and used to prove that each Gr-category is Gr-equivalent to a strict one.
We describe an abstract 2-categorical setting to study various notions of polynomial and analytic functors and monads.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا