Do you want to publish a course? Click here

Review of Anisotropic Terahertz Material Response

150   0   0.0 ( 0 )
 Added by Junichiro Kono
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Anisotropy is ubiquitous in solids and enhanced in low-dimensional materials. In response to an electromagnetic wave, anisotropic absorptive and refractive properties result in dichroic and birefringent optical phenomena both in the linear and nonlinear optics regimes. Such material properties have led to a diverse array of useful polarization components in the visible and near-infrared, but mature technology is non-existent in the terahertz (THz). Here, we review several novel types of anisotropic material responses observed in the THz frequency range, including both linear and circular anisotropy, which have long-term implications for the development of THz polarization optics. We start with the extreme linear anisotropy of macroscopically aligned carbon nanotubes, arising from their intrinsically anisotropic dynamic conductivity. Magnetically induced anisotropy will then be reviewed, including the giant Faraday effects observed in semiconductors, semimetals, and two-dimensional electron systems.



rate research

Read More

Black phosphorus has recently emerged as a promising material for high performance electronic and optoelectronic device for its high mobility, tunable mid-infrared bandgap and anisotropic electronic properties. Dynamical evolution of photo excited carriers and its induced change of transient electronic properties are critical for materials high field performance, but remains to be explored for black phosphorus. In this work, we perform angle resolved transient reflection spectroscopy to study the dynamical evolution of anisotropic properties of black phosphorus under photo excitation. We find that the anisotropy of reflectivity is enhanced in the pump induced quasi-equilibrium state, suggesting an extraordinary enhancement of the anisotropy in dynamical conductivity in hot carrier dominated regime. These results raise enormous possibilities of creating high field, angle sensitive electronic, optoelectronic and remote sensing devices exploiting the dynamical electronic anisotropic with black phosphorus.
We theoretically study the low energy electromagnetic response of BCS type superconductors focusing on propagating collective modes that are observable with THz near field optics. The interesting frequency and momentum range is $omega < 2Delta$ and $q < 1/xi$ where $Delta$ is the gap and $xi$ is the coherence length. We show that it is possible to observe the superfluid plasmons, amplitude (Higgs) modes, Bardasis-Schrieffer modes and Carlson-Goldman modes using THz near field technique, although none of these modes couple linearly to far field radiation. Coupling of THz near field radiation to the amplitude mode requires particle-hole symmetry breaking while coupling to the Bardasis-Schrieffer mode does not and is typically stronger. For parameters appropriate to layered superconductors of current interest, the Carlson-Goldman mode appears in the near field reflection coefficient as a weak feature in the sub-THz frequency range. In a system of two superconducting layers with nanometer scale separation, an acoustic phase mode appears as the antisymmetric density fluctuation mode of the system. This mode produces well defined resonance peaks in the near-field THz response and has strong anticrossings with the Bardasis-Schrieffer and amplitude modes, enhancing their response. In a slab consisting of many layers of quasi-two dimensional superconductors, realized for example in samples of high T$_c$ cuprate compounds, many branches of propagating Josephson plasmon modes are found to couple to the THz near field radiation.
Terahertz electromagnetic radiation is extremely useful for numerous applications such as imaging and spectroscopy. Therefore, it is highly desirable to have an efficient table-top emitter covering the 1-to-30-THz window whilst being driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source which relies on tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photo-induced spin currents, the inverse spin-Hall effect and a broadband Fabry-Perot resonance. Guided by an analytical model, such spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1-to-30-THz range. Our novel source outperforms laser-oscillator-driven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz-field amplitude, flexibility, scalability and cost.
We report on experiments to measure the temporal and spatial evolution of packing arrangements of anisotropic, cylindrical granular material, using high-resolution capacitive monitoring. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical vibrations evolve to a dense, highly ordered, nematic state in which the long particle axes align with the vertical tube walls. We find that the orientational ordering process is reflected in a characteristic, steep rise in the local packing fraction. At any given height inside the packing, the ordering is initiated at the container walls and proceeds inward. We explore the evolution of the local as well as the height-averaged packing fraction as a function of vibration parameters and compare our results to relaxation experiments conducted on spherically shaped granular materials.
82 - W. X. Zhou , A. Ariando 2020
The possibility of reconciliation between seemingly mutually exclusive properties in one system can not only lead to theoretical breakthroughs but also potential novel applications. The research on the coexistence of two purportedly contra-indicated properties, ferroelectricity/polarity and conductivity, proposed by Anderson and Blount over 50 years ago was recently revitalized by the discovery of the first unambiguous polar metal LiOsO3 and further fueled by the demonstration of the first switchable ferroelectric metal WTe2. In this review, we first discuss the reasons why the coexistence of ferroelectricity/polarity and conductivity have been deemed incompatible, followed by a review on the history of ferroelectric/polar metals. Secondly, we review the important milestones along with the corresponding mechanisms for the ferroelectric/polar metallic phases in these materials. Thirdly, we summarize the design approaches for ferroelectric/polar metals. Finally, we discuss the future prospects and potential applications of ferroelectric/polar metals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا