Do you want to publish a course? Click here

Observation of HCN hyperfine line anomalies towards low- and high-mass star-forming cores

178   0   0.0 ( 0 )
 Added by Robert Loughnane
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

HCN is becoming a popular choice of molecule for studying star formation in both low- and high-mass regions and for other astrophysical sources from comets to high-redshift galaxies. However, a major and often overlooked difficulty with HCN is that it can exhibit non-local thermodynamic equilibrium (non-LTE) behaviour in its hyperfine line structure. Individual hyperfine lines can be strongly boosted or suppressed. In low-mass star-forming cloud observations, this could possibly lead to large errors in the calculation of opacity and excitation temperature, while in massive star-forming clouds, where the hyperfine lines are blended due to turbulent broadening, errors will arise in infall measurements that are based on the separation of the peaks in a self-absorbed profile. The underlying line shape cannot be known for certain if hyperfine anomalies are present. We present a first observational investigation of these anomalies across a range of conditions and transitions by carrying out a survey of low-mass starless cores (in Taurus & Ophiuchus) and high-mass protostellar objects (in the G333 giant molecular cloud) using hydrogen cyanide (HCN) J=1-0 and J=3-2 emission lines. We quantify the degree of anomaly in these two rotational levels by considering ratios of individual hyperfine lines compared to LTE values. We find that all the cores observed show some degree of anomaly while many of the lines are severely anomalous. We conclude that HCN hyperfine anomalies are common in both lines in both low-mass and high-mass protostellar objects, and we discuss the differing hypotheses for the generation of the anomalies. In light of the results, we favour a line overlap effect for the origins of the anomalies. We discuss the implications for the use of HCN as a dynamical tracer and suggest in particular that the J=1-0, F=0-1 hyperfine line should be avoided in quantitative calculations.



rate research

Read More

Although hydrogen cyanide has become quite a common molecular tracing species for a variety of astrophysical sources, it, however, exhibits dramatic non-LTE behaviour in its hyperfine line structure. Individual hyperfine components can be strongly boosted or suppressed. If these so-called hyperfine line anomalies are present in the HCN rotational spectra towards low or high mass cores, this will affect the interpretation of various physical properties such as the line opacity and excitation temperature in the case of low mass objects and infall velocities in the case of their higher mass counterparts. This is as a consequence of the direct effects that anomalies have on the underlying line shape, be it with the line structural width or through the inferred line strength. This work involves the first observational investigation of these anomalies in two HCN rotational transitions, J=1!0 and J=3!2, towards both low mass starless cores and high mass protostellar objects. The degree of anomaly in these two rotational transitions is considered by computing the ratios of neighboring hyperfine lines in individual spectra. Results indicate some degree of anomaly is present in all cores considered in our survey, the most likely cause being line overlap effects among hyperfine components in higher rotational transitions.
83 - Jonathan C. Tan 2015
I review theoretical models of star formation and how they apply across the stellar mass spectrum. Several distinct theories are under active study for massive star formation, especially Turbulent Core Accretion, Competitive Accretion and Protostellar Mergers, leading to distinct observational predictions. These include the types of initial conditions, the structure of infall envelopes, disks and outflows, and the relation of massive star formation to star cluster formation. Even for Core Accretion models, there are several major uncertainties related to the timescale of collapse, the relative importance of different processes for preventing fragmentation in massive cores, and the nature of disks and outflows. I end by discussing some recent observational results that are helping to improve our understanding of these processes.
An unbiased spectral line survey toward a solar-type Class 0/I protostar, IRAS04368+2557, in L1527 has been carried out in the 3 mm band with the Nobeyama 45 m telescope. L1527 is known as a warm carbon-chain chemistry (WCCC) source, which harbors abundant unsaturated organic species such as C$_n$H ($n = 3, 4, 5,ldots$) in a warm and dense region near the protostar. The observation covers the frequency range from 80 to 116 GHz. A supplementary observation has also been conducted in the 70 GHz band to observe fundamental transitions of deuterated species. In total, 69 molecular species are identified, among which 27 species are carbon-chain species and their isomers, including their minor isotopologues. This spectral line survey provides us with a good template of the chemical composition of the WCCC source.
The interaction between dust, ice, and gas during the formation of stars produces complex organic molecules. While observations indicate that several species are formed on ice-covered dust grains and are released into the gas phase, the exact chemical interplay between solid and gas phases and their relative importance remain unclear. Our goal is to study the interplay in regions of low-mass star formation through ice- and gas-mapping and by directly measuring gas-to-ice ratios. This provides constraints on the routes that lead to the chemical complexity that is observed in both phases. We present observations of gas-phase methanol (CH$_3$OH) and carbon monoxide at 1.3 mm towards ten low-mass young protostars in the Serpens SVS4 cluster from the SubMillimeter Array and the Atacama Pathfinder EXperiment telescope. We used archival data from the Very Large Telescope to derive abundances of ice H$_2$O, CO, and CH$_3$OH towards the same region. Finally, we constructed gas-ice maps of SVS4 and directly measured CO and CH$_3$OH gas-to-ice ratios. The CH$_3$OH gas-to-ice ratio agrees with values that were previously reported for embedded Class 0/I low-mass protostars. The CO gas-maps trace an extended gaseous component that is not sensitive to the effect of freeze-out. We find that there is no straightforward correlation between CO and CH$_3$OH gas with their ice counterparts in the cluster. This is likely related to the complex morphology of SVS4: the Class 0 protostar SMM4 and its envelope lie in the vicinity, and the outflow associated with SMM4 intersects the cluster. This study serves as a pathfinder for future observations with ALMA and the James Webb Space Telescope that will provide high-sensitivity gas-ice maps of molecules more complex than methanol. Such comparative maps will be essential to constrain the chemical routes that regulate the chemical complexity in star-forming regions.
Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components.The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium. This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low mass star forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا