Do you want to publish a course? Click here

The finite index basis property

142   0   0.0 ( 0 )
 Added by Dominique Perrin
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

We describe in this paper a connection between bifix codes, symbolic dynamical systems and free groups. This is in the spirit of the connection established previously for the symbolic systems corresponding to Sturmian words. We introduce a class of sets of factors of an infinite word with linear factor complexity containing Sturmian sets and regular interval exchange sets, namemly the class of tree sets. We prove as a main result that for a uniformly recurrent tree set $F$, a finite bifix code $X$ on the alphabet $A$ is $F$-maximal of $F$-degree $d$ if and only if it is the basis of a subgroup of index $d$ of the free group on $A$.



rate research

Read More

A set of n points in the plane which are not all collinear defines at least n distinct lines. Chen and Chvatal conjectured in 2008 that a similar result can be achieved in the broader context of finite metric spaces. This conjecture remains open even for graph metrics. In this article we prove that graphs with no induced house nor induced cycle of length at least~5 verify the desired property. We focus on lines generated by vertices at distance at most 2, define a new notion of ``good pairs that might have application in larger families, and finally use a discharging technique to count lines in irreducible graphs.
We prove the Lefschetz property for a certain class of finite-dimensional Gorenstein algebras associated to matroids. Our result implies the Sperner property of the vector space lattice. More generally, it is shown that the modular geometric lattice has the Sperner property. We also discuss the Grobner fan of the defining ideal of our Gorenstein algebra.
406 - Yoo Chung , Dongman Lee 2009
Despite providing similar functionality, multiple network services may require the use of different interfaces to access the functionality, and this problem will only get worse with the widespread deployment of ubiquitous computing environments. One way around this problem is to use interface adapters that adapt one interface into another. Chaining these adapters allows flexible interface adaptation with fewer adapters, but the loss incurred due to imperfect interface adaptation must be considered. This paper outlines a mathematical basis for analyzing the chaining of lossy interface adapters. We also show that the problem of finding an optimal interface adapter chain is NP-complete.
A Group Labeled Graph is a pair $(G,Lambda)$ where $G$ is an oriented graph and $Lambda$ is a mapping from the arcs of $G$ to elements of a group. A (not necessarily directed) cycle $C$ is called non-null if for any cyclic ordering of the arcs in $C$, the group element obtained by `adding the labels on forward arcs and `subtracting the labels on reverse arcs is not the identity element of the group. Non-null cycles in group labeled graphs generalize several well-known graph structures, including odd cycles. In this paper, we prove that non-null cycles on Group Labeled Graphs have the half-integral Erdos-Posa property. That is, there is a function $f:{mathbb N}to {mathbb N}$ such that for any $kin {mathbb N}$, any group labeled graph $(G,Lambda)$ has a set of $k$ non-null cycles such that each vertex of $G$ appears in at most two of these cycles or there is a set of at most $f(k)$ vertices that intersects every non-null cycle. Since it is known that non-null cycles do not have the integeral Erdos-Posa property in general, a half-integral Erdos-Posa result is the best one could hope for.
The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been proved mainly for product spaces, which raises the question of whether analogous results hold over non-product domains. We consider the symmetric group, $S_n$, one of the most basic non-product domains, and establish hypercontractive inequalities on it. Our inequalities are most effective for the class of emph{global functions} on $S_n$, which are functions whose $2$-norm remains small when restricting $O(1)$ coordinates of the input, and assert that low-degree, global functions have small $q$-norms, for $q>2$. As applications, we show: 1. An analog of the level-$d$ inequality on the hypercube, asserting that the mass of a global function on low-degrees is very small. We also show how to use this inequality to bound the size of global, product-free sets in the alternating group $A_n$. 2. Isoperimetric inequalities on the transposition Cayley graph of $S_n$ for global functions, that are analogous to the KKL theorem and to the small-set expansion property in the Boolean hypercube. 3. Hypercontractive inequalities on the multi-slice, and stabili
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا