Do you want to publish a course? Click here

Sperner property and finite-dimensional Gorenstein algebras associated to matroids

126   0   0.0 ( 0 )
 Added by Toshiaki Maeno
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We prove the Lefschetz property for a certain class of finite-dimensional Gorenstein algebras associated to matroids. Our result implies the Sperner property of the vector space lattice. More generally, it is shown that the modular geometric lattice has the Sperner property. We also discuss the Grobner fan of the defining ideal of our Gorenstein algebra.



rate research

Read More

124 - J. Elias , M. E. Rossi 2021
Let $R$ be the power series ring or the polynomial ring over a field $k$ and let $I $ be an ideal of $R.$ Macaulay proved that the Artinian Gorenstein $k$-algebras $R/I$ are in one-to-one correspondence with the cyclic $R$-submodules of the divided power series ring $Gamma. $ The result is effective in the sense that any polynomial of degree $s$ produces an Artinian Gorenstein $k$-algebra of socle degree $s.$ In a recent paper, the authors extended Macaulays correspondence characterizing the $R$-submodules of $Gamma $ in one-to-one correspondence with Gorenstein d-dimensional $k$-algebras. However, these submodules in positive dimension are not finitely generated. Our goal is to give constructive and finite procedures for the construction of Gorenstein $k$-algebras of dimension one and any codimension. This has been achieved through a deep analysis of the $G$-admissible submodules of $Gamma. $ Applications to the Gorenstein linkage of zero-dimensional schemes and to Gorenstein affine semigroup rings are discussed.
We study the problem of whether an arbitrary codimension three graded artinian Gorenstein algebra has the Weak Lefschetz Property. We reduce this problem to checking whether it holds for all compressed Gorenstein algebras of odd socle degree. In the first open case, namely Hilbert function (1,3,6,6,3,1), we give a complete answer in every characteristic by translating the problem to one of studying geometric aspects of certain morphisms from $mathbb P^2$ to $mathbb P^3$, and Hesse configurations in $mathbb P^2$.
We answer a question of Celikbas, Dao, and Takahashi by establishing the following characterization of Gorenstein rings: a commutative noetherian local ring $(R,mathfrak m)$ is Gorenstein if and only if it admits an integrally closed $mathfrak m$-primary ideal of finite Gorenstein dimension. This is accomplished through a detailed study of certain test complexes. Along the way we construct such a test complex that detect finiteness of Gorenstein dimension, but not that of projective dimension.
We relate the Weyr structure of a square matrix $B$ to that of the $t times t$ block upper triangular matrix $C$ that has $B$ down the main diagonal and first superdiagonal, and zeros elsewhere. Of special interest is the case $t = 2$ and where $C$ is the $n$th Sierpinski matrix $B_n$, which is defined inductively by $B_0 = 1$ and $B_n = left[begin{array}{cc} B_{n-1} & B_{n-1} 0 & B_{n-1} end{array} right]$. This yields an easy derivation of the Weyr structure of $B_n$ as the binomial coefficients arranged in decreasing order. Earlier proofs of the Jordan analogue of this had often relied on deep theorems from such areas as algebraic geometry. The result has interesting consequences for commutative, finite-dimension algebras.
We prove upper bounds for the Hilbert-Samuel multiplicity of standard graded Gorenstein algebras. The main tool that we use is Boij-Soderberg theory to obtain a decomposition of the Betti table of a Gorenstein algebra as the sum of rational multiples of symmetrized pure tables. Our bound agrees with the one in the quasi-pure case obtained by Srinivasan [J. Algebra, vol.~208, no.~2, (1998)].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا