Do you want to publish a course? Click here

Non-equilibrium correlations and entanglement in a semiconductor hybrid circuit-QED system

125   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a theoretical study of a hybrid circuit-QED system composed of two semiconducting charge-qubits confined in a microwave resonator. The qubits are defined in terms of the charge states of two spatially separated double quantum dots (DQDs) which are coupled to the same photon mode in the microwave resonator. We analyze a transport setup where each DQD is attached to electronic reservoirs and biased out-of-equilibrium by a large voltage, and study how electron transport across each DQD is modified by the coupling to the common resonator. In particular, we show that the inelastic current through each DQD reflects an indirect qubit-qubit interaction mediated by off-resonant photons in the microwave resonator. As a result of this interaction, both charge qubits stay entangled in the steady (dissipative) state. Finite shot noise cross-correlations between currents across distant DQDs are another manifestation of this nontrivial steady-state entanglement.



rate research

Read More

Vacuum Rabi splitting is observed in a coupled qubit-resonator system consisting of a GaAs double quantum dot and a coplanar waveguide resonator. Derived values of the qubit-resonator coupling strength and the decoherence rate indicate strong coupling, which assures distinct vacuum Rabi oscillation in the system. The amplitude of decoherence is reasonably interpreted in terms of the coupling of electrons to piezoelectric acoustic phonons in GaAs.
We present an indirect two-qubit parity meter in planar circuit quantum electrodynamics, realized by discrete interaction with an ancilla and a subsequent projective ancilla measurement with a dedicated, dispersively coupled resonator. Quantum process tomography and successful entanglement by measurement demonstrate that the meter is intrinsically quantum non-demolition. Separate interaction and measurement steps allow commencing subsequent data qubit operations in parallel with ancilla measurement, offering time savings over continuous schemes.
Maxwell demons are creatures that are imagined to be able to reduce the entropy of a system without performing any work on it. Conventionally, such a Maxwell demons intricate action consists of measuring individual particles and subsequently performing feedback. Here we show that much simpler setups can still act as demons: we demonstrate that it is sufficient to exploit a non-equilibrium distribution to seemingly break the second law of thermodynamics. We propose both an electronic and an optical implementation of this phenomenon, realizable with current technology.
In this paper we derive an effective master equation and quantum trajectory equation for multiple qubits in a single resonator and in the large resonator decay limit. We show that homodyne measurement of the resonator transmission is a weak measurement of the collective qubit inversion. As an example of this result, we focus on the case of two qubits and show how this measurement can be used to generate an entangled state from an initially separable state. This is realized without relying on an entangling Hamiltonian. We show that, for {em current} experimental values of both the decoherence and measurement rates, this approach can be used to generate highly entangled states. This scheme takes advantage of the fact that one of the Bell states is decoherence-free under Purcell decay.
114 - S. Mark , C. Gould , K. Pappert 2008
We report the discovery of an effect where two ferromagnetic materials, one semiconductor ((Ga,Mn)As) and one metal (permalloy), can be directly deposited on each other and still switch their magnetization independently. We use this independent magnetization behavior to create various resistance states dependent on the magnetization direction of the individual layers. At zero magnetic field a two layer device can reach up to four non-volatile resistance states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا