Do you want to publish a course? Click here

Nonlinear Plasma Wave in Magnetized Plasmas

173   0   0.0 ( 0 )
 Added by Sergei Bulanov V.
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic Four-Ray Star pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].



rate research

Read More

A generalized Ohms law is derived to treat strongly magnetized plasmas in which the electron gyrofrequency significantly exceeds the electron plasma frequency. The frictional drag due to Coulomb collisions between electrons and ions is found to shift, producing an additional transverse resistivity term in the generalized Ohms law that is perpendicular to both the current ($vc{J}$) and the Hall ($vc{J} times vc{B}$) direction. In the limit of very strong magnetization, the parallel resistivity is found to increase by a factor of 3/2, and the perpendicular resistivity to scale as $ln (omega_{ce} tau_e)$, where $omega_{ce} tau_e$ is the Hall parameter. Correspondingly, the parallel conductivity coefficient is reduced by a factor of 2/3, and the perpendicular conductivity scales as $ln(omega_{ce} tau_e)/(omega_{ce} tau_e)^2$. These results suggest that strong magnetization significantly changes the magnetohydrodynamic evolution of a plasma.
Exact solutions of a magnetized plasma in a vorticity containing shear flow for constant temperature are presented. This is followed by the modification of these solutions by thermomagnetic currents in the presence of temperature gradients. It is shown that solutions which are unstable for a subsonic flow, are stable if the flow is supersonic. The results are applied to the problem of vorticity shear flow stabilization of a linear z-pinch discharge.
Recent analytical works on strong magnetized plasma turbulence have hypothesized the existence of a range of scales where the tearing instability may govern the energy cascade. In this paper, we estimate the conditions under which such tearing may give rise to full nonlinear magnetic reconnection in the turbulent eddies, thereby enabling significant energy conversion and dissipation. When those conditions are met, a new turbulence regime is accessed where reconnection-driven energy dissipation becomes common, rather than the rare feature that it must be when they are not.
Plasma turbulence is studied via direct numerical simulations in a two-dimensional spatial geometry. Using a hybrid Vlasov-Maxwell model, we investigate the possibility of a velocity-space cascade. A novel theory of space plasma turbulence has been recently proposed by Servidio {it et al.} [PRL, {bf 119}, 205101 (2017)], supported by a three-dimensional Hermite decomposition applied to spacecraft measurements, showing that velocity space fluctuations of the ion velocity distribution follow a broad-band, power-law Hermite spectrum $P(m)$, where $m$ is the Hermite index. We numerically explore these mechanisms in a more magnetized regime. We find that (1) the plasma reveals spectral anisotropy in velocity space, due to the presence of an external magnetic field (analogous to spatial anisotropy of fluid and plasma turbulence); (2) the distribution of energy follows the prediction $P(m)sim m^{-2}$, proposed in the above theoretical-observational work; and (3) the velocity-space activity is intermittent in space, being enhanced close to coherent structures such as the reconnecting current sheets produced by turbulence. These results may be relevant to the nonlinear dynamics weakly-collisional plasma in a wide variety of circumstances.
We consider backscattering of laser pulses in strongly-magnetized plasma mediated by kinetic magnetohydrodynamic waves. Magnetized low-frequency scattering, which can occur when the external magnetic field is neither perpendicular nor parallel to the laser propagation direction, provides an instability growth rate higher than Raman scattering and a frequency downshift comparable to Brillouin scattering. In addition to the high growth rate, which allows smaller plasmas, and the 0.1-2% frequency downshift, which permits a wide range of pump sources, MLF scattering is an ideal candidate for amplification because the process supports an extremely large bandwidth, which particle-in-cell simulations show produces ultrashort durations. Under some conditions, MLF scattering also becomes the dominant spontaneous backscatter instability, with implications for magnetized laser-confinement experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا