Do you want to publish a course? Click here

A sample of small size compact steep-spectrum radio sources. VLBI images and VLA polarization at 5 GHz

670   0   0.0 ( 0 )
 Added by Monica Orienti
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Global VLBI observations at 5 GHz have been performed to study the source morphology in 10 compact steep-spectrum (CSS) sources selected from the Peacock & Wall catalogue with the aim of finding asymmetric structures produced by the interaction with the ambient medium. The combination of these data and earlier 1.7-GHz observations allows the study of the spectral index distribution across the source structure and the unambiguous determination of the nature of each component. In seven sources we detected the core component with a flat or inverted spectrum. In six sources the radio emission has a two-sided morphology and comes mainly from steep-spectrum extended structures, like lobes, jets, and hotspots. Only one source, 0319+121, has a one-sided core-jet structure. In three out of the six sources with a two-sided structure the flux density arising from the lobes is asymmetric, and the brightest lobe is the one closest to the core, suggesting that the jets are expanding in an inhomogeneous ambient medium which may influence the source growth. The interaction between the jet and the environment may slow down the source expansion and enhance the luminosity due to severe radiative losses, likely producing an excess of CSS radio sources in flux density limited samples. The lobes of the other three asymmetric sources have a brighter-when-farther behaviour, in agreement with what is expected by projection and relativistic effects. Simultaneous VLA observations carried out to investigate the polarization properties of the targets detected significant polarized emission (~5.5%) only from the quasar 0319+121.



rate research

Read More

105 - M. Orienti 2015
Compact steep spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources represent a large fraction of the extragalactic objects in flux density-limited samples. They are compact, powerful radio sources whose synchrotron peak frequency ranges between a few hundred MHz to several GHz. CSS and GPS radio sources are currently interpreted as objects in which the radio emission is in an early evolutionary stage. In this contribution I review the radio properties and the physical characteristics of this class of radio sources, and the interplay between their radio emission and the ambient medium of the host galaxy.
256 - D. Dallacasa 2021
We present results on global very long baseline interferometry (VLBI) observations at 327 MHz of eighteen compact steep-spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources from the 3C and the Peacock & Wall catalogues. About 80 per cent of the sources have a double/triple structure. The radio emission at 327 MHz is dominated by steep-spectrum extended structures, while compact regions become predominant at higher frequencies. As a consequence, we could unambiguously detect the core region only in three sources, likely due to self-absorption affecting its emission at this low frequency. Despite their low surface brightness, lobes store the majority of the source energy budget, whose correct estimate is a key ingredient in tackling the radio source evolution. Low-frequency VLBI observations able to disentangle the lobe emission from that of other regions are therefore the best way to infer the energetics of these objects. Dynamical ages estimated from energy budget arguments provide values between 2x10^3 and 5x10^4 yr, in agreement with the radiative ages estimated from the fit of the integrated synchrotron spectrum, further supporting the youth of these objects. A discrepancy between radiative and dynamical ages is observed in a few sources where the integrated spectrum is dominated by hotspots. In this case the radiative age likely represents the time spent by the particles in these regions, rather than the source age.
Compact steep-spectrum (CSS) and peaked spectrum (PS) radio sources are compact, powerful radio sources. The multi-frequency observational properties and current theories are reviewed with emphasis on developments since the earlier review of ODea (1998). There are three main hypotheses for the nature of PS and CSS sources. (1) The PS sources might be very young radio galaxies which will evolve into CSS sources on their way to becoming large radio galaxies. (2) The PS and CSS sources might be compact because they are confined (and enhanced in radio power) by interaction with dense gas in their environments. (3) Alternately, the PS sources might be transient or intermittent sources. Each of these hypotheses may apply to individual objects. The relative number in each population will have significant implications for the radio galaxy paradigm. Proper motion studies over long time baselines have helped determine hotspot speeds for over three dozen sources and establish that these are young objects. Multifrequency polarization observations have demonstrated that many CSS/PS sources are embedded in a dense interstellar medium and vigorously interacting with it. The detection of emission line gas aligned with the radio source, and blue-shifted HI absorption and [OIII] emission lines indicates that AGN feedback is present in these objects -- possibly driven by the radio source. CSS/PS sources with evidence of episodic AGN over a large range of time-scales have been discussed. The review closes with a discussion of open questions and prospects for the future.
404 - Z.-Q. Shen 1998
We report the results of a 5-GHz southern-hemisphere snapshot VLBI observation of a sample of blazars. The observations were performed with the Southern Hemisphere VLBI Network plus the Shanghai station in 1993 May. Twenty-three flat-spectrum, radio-loud sources were imaged. These are the first VLBI images for 15 of the sources. Eight of the sources are EGRET (> 100 MeV) gamma-ray sources. The milliarcsecond morphology shows a core-jet structure for 12 sources, and a single compact core for the remaining 11. No compact doubles were seen. Compared with other radio images at different epochs and/or different frequencies, 3 core-jet blazars show evidence of bent jets, and there is some evidence for superluminal motion in the cases of 2 blazars. The detailed descriptions for individual blazars are given. This is the second part of a survey: the first part was reported by Shen et al. (AJ 114(1997)1999).
66 - Z.-Q. Shen 1997
We report the results of a 5 GHz southern hemisphere VLBI survey of compact extragalactic radio sources. These observations were undertaken with the SHEVE array plus Shanghai station in November 1992. A sample of 22 sources was observed and images of 20 of them were obtained. Of the 20 sources imaged, 15 showed core-jet structure, one had a two-sided jet and 4 had only single compact cores. Eleven of the 16 core-jet (including one two-sided jet) sources show some evidence of bent jets. No compact doubles were found. A comparison with previous images and the temporal variability of the radio flux density showed evidence for superluminal motion in 4 of the sources. Five sources were high energy (>100 MeV) gamma-ray sources. Statistical analysis showed the dominance of highly polarized quasars among the detected gamma-ray sources, which emphasizes the importance of beaming effect in the gamma-ray emission.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا