Do you want to publish a course? Click here

Measurement of the isotopic composition of hydrogen and helium nuclei in cosmic rays with the PAMELA experiment

161   0   0.0 ( 0 )
 Added by Valerio Formato
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium isotopes over the 23rd solar minimum from July 2006 to December 2007. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.



rate research

Read More

The cosmic-ray hydrogen and helium ($^1$H, $^2$H, $^3$He, $^4$He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. The rare isotopes $^2$H and $^3$He in cosmic rays are believed to originate mainly from the interaction of high energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from July 2006 to December 2007.
The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei, as well as the B/C ratio, from the PAMELA space experiment. The results span the range 0.44 - 129 GeV/n in kinetic energy for data taken in the period July 2006 - March 2008.
166 - N. Marcelli , M. Boezio , A. Lenni 2020
Precise time-dependent measurements of the Z = 2 component in the cosmic radiation provide crucial information about the propagation of charged particles through the heliosphere. The PAMELA experiment, with its long flight duration (15th June 2006 - 23rd January 2016) and the low energy threshold (80 MeV/n) is an ideal detector for cosmic ray solar modulation studies. In this paper, the helium nuclei spectra measured by the PAMELA instrument from July 2006 to December 2009 over a Carrington rotation time basis are presented. A state-of-the-art three-dimensional model for cosmic-ray propagation inside the heliosphere was used to interpret the time-dependent measured fluxes. Proton-to-helium flux ratio time profiles at various rigidities are also presented in order to study any features which could result from the different masses and local interstellar spectra shapes.
The PAMELA satellite borne experiment is designed to study cosmic rays with great accuracy in a wide energy range. One of PAMELAs main goal is the study of the antimatter component of cosmic rays. The experiment, housed on board the Russian satellite Resurs-DK1, was launched on June 15th 2006 and it is still taking data. In this work we present the measurement of galactic positron energy spectrum in the energy range between 500 MeV and few hundred GeV.
Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in the Galaxy. We report precision measurements of the proton and helium spectra in the rigidity range 1 GV-1.2 TV performed by the satellite-borne experiment PAMELA. We find that the spectral shapes of these two species are different and cannot be well described by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا