Do you want to publish a course? Click here

Cosmic-Ray Positron Identification with the PAMELA experiment

175   0   0.0 ( 0 )
 Added by Emiliano Mocchiutti
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The PAMELA satellite borne experiment is designed to study cosmic rays with great accuracy in a wide energy range. One of PAMELAs main goal is the study of the antimatter component of cosmic rays. The experiment, housed on board the Russian satellite Resurs-DK1, was launched on June 15th 2006 and it is still taking data. In this work we present the measurement of galactic positron energy spectrum in the energy range between 500 MeV and few hundred GeV.



rate research

Read More

Precision measurements of the positron component in the cosmic radiation provide important information about the propagation of cosmic rays and the nature of particle sources in our Galaxy. The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray positron flux and fraction that extends previously published measurements up to 300 GeV in kinetic energy. The combined measurements of the cosmic-ray positron energy spectrum and fraction provide a unique tool to constrain interpretation models. During the recent solar minimum activity period from July 2006 to December 2009 approximately 24500 positrons were observed. The results cannot be easily reconciled with purely secondary production and additional sources of either astrophysical or exotic origin may be required.
The cosmic-ray hydrogen and helium ($^1$H, $^2$H, $^3$He, $^4$He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. The rare isotopes $^2$H and $^3$He in cosmic rays are believed to originate mainly from the interaction of high energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from July 2006 to December 2007.
The PAMELA detector was launched on board of the Russian Resurs-DK1 satellite on June 15, 2006. Data collected during the first four years have been used to search for large-scale anisotropies in the arrival directions of cosmic-ray positrons. The PAMELA experiment allows for a full sky investigation, with sensitivity to global anisotropies in any angular window of the celestial sphere. Data samples of positrons in the rigidity range 10 GV $leq$ R $leq$ 200 GV were analyzed. This article discusses the method and the results of the search for possible local sources through analysis of anisotropy in positron data compared to the proton background. The resulting distributions of arrival directions are found to be isotropic. Starting from the angular power spectrum, a dipole anisotropy upper limit delta = 0.166 at 95% C.L. is determined. Additional search is carried out around the Sun. No evidence of an excess correlated with that direction was found.
Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy. Here we present new results regarding negatively charged electrons between 1 and 625 GeV performed by the satellite-borne experiment PAMELA. This is the first time that cosmic-ray electrons have been identified above 50 GeV. The electron spectrum can be described with a single power law energy dependence with spectral index -3.18 +- 0.05 above the energy region influenced by the solar wind (> 30 GeV). No significant spectral features are observed and the data can be interpreted in terms of conventional diffusive propagation models. However, the data are also consistent with models including new cosmic-ray sources that could explain the rise in the positron fraction.
The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei, as well as the B/C ratio, from the PAMELA space experiment. The results span the range 0.44 - 129 GeV/n in kinetic energy for data taken in the period July 2006 - March 2008.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا