Do you want to publish a course? Click here

Giant Magnetic Fluctuations at the Critical Endpoint in Insulating HoMnO3

80   0   0.0 ( 0 )
 Added by Nara Lee
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although abundant research has focused recently on the quantum criticality of itinerant magnets, critical phenomena of insulating magnets in the vicinity of critical endpoints (CEPs) have rarely been revealed. Here we observe an emergent CEP at 2.05 T and 2.2 K with a suppressed thermal conductivity and concomitant strong critical fluctuations evident via a divergent magnetic susceptibility (e.g., chi(2.05 T, 2.2 K)/chi(3 T, 2.2 K)=23,500 %, comparable to the critical opalescence in water) in the hexagonal insulating antiferromagnet HoMnO3.

rate research

Read More

Strange metal behavior is ubiquitous to correlated materials ranging from cuprate superconductors to bilayer graphene. There is increasing recognition that it arises from physics beyond the quantum fluctuations of a Landau order parameter which, in quantum critical heavy fermion antiferromagnets, may be realized as critical Kondo entanglement of spin and charge. The dynamics of the associated electronic delocalization transition could be ideally probed by optical conductivity, but experiments in the corresponding frequency and temperature ranges have remained elusive. We present terahertz time-domain transmission spectroscopy on molecular beam epitaxy-grown thin films of YbRh$_2$Si$_2$, a model strange metal compound. We observe frequency over temperature scaling of the optical conductivity as a hallmark of beyond-Landau quantum criticality. Our discovery implicates critical charge fluctuations as playing a central role in the strange metal behavior, thereby elucidating one of the longstanding mysteries of correlated quantum matter.
Motivated by the presence of an unquenched orbital angular momentum in CoO, a team at Chalk River, including a recently hired research officer Roger Cowley, performed the first inelastic neutron scattering experiments on the classic Mott insulator [Sakurai $textit{et al.}$ 1968 Phys. Rev. $mathbf{167}$ 510]. Despite identifying magnon modes at the zone boundary, the team was unable to parameterise the low energy magnetic excitation spectrum below $Trm{_{N}}$ using conventional pseudo-bosonic approaches. It would not be for another 40 years that Roger, now at Oxford and motivated by the discovery of the high-$T_{c}$ cuprate superconductors [Bednorz & Muller 1986 Z. Phys. B $mathbf{64}$ 189], would make another attempt at the parameterisation of the magnetic excitation spectrum that had previously alluded him. Upon his return to CoO, Roger found a system embroiled in controversy, with some of its most fundamental parameters still remaining undetermined. Faced with such a formidable task, Roger performed a series of inelastic neutron scattering experiments in the early 2010s on both CoO and a magnetically dilute structural analogue MgO. These experiments would prove instrumental in the determination of both single-ion [Cowley $textit{et al.}$ 2013 Phys. Rev. B $mathbf{88}$ 205117] and cooperative magnetic parameters [Sarte $textit{et al.}$ 2018 Phys. Rev. B $mathbf{98}$ 024415] for CoO. Both these sets of parameters would eventually be used in a spin-orbit exciton model [Sarte $textit{et al.}$ 2019 Phys. Rev. B $mathbf{100}$ 075143], developed by his longtime friend and collaborator Bill Buyers, to successfully parameterise the complex spectrum that both measured at Chalk River almost 50 years prior. The story of CoO is of one that has come full circle, one filled with both spectacular failures and intermittent, yet profound, little victories.
Orthorhombic HoMnO3 is a multiferroic in which Mn antiferromagnetic order induces ferroelectricity. A second transition occurs within the multiferroic phase, in which a strong enhancement of the ferroelectric polarization occurs concomitantly to antiferromagnetic ordering of Ho 4f magnetic moments. Using the element selectivity of resonant X-ray diffraction, we study the magnetic order of the Mn 3d and Ho 4f moments. We explicitly show that the Mn magnetic order is affected by the Ho 4f magnetic ordering transition. Based on the azimuthal dependence of the (0 q 0) and (0 1-q 0) magnetic reflections, we suggest that the Ho 4f order is similar to that previously observed for Tb 4f in TbMnO3, which resembles an ac-cycloid. This is unlike the Mn order, which has already been shown to be different for the two materials. Using non-resonant diffraction, we show that the magnetically-induced ferroelectric lattice distortion is unaffected by the Ho ordering, suggesting a mechanism through which the Ho order affects polarization without affecting the lattice in the same manner as the Mn order.
Thermal conductivity of Sr3Ru2O7 was measured down to 40 mK and at magnetic fields through the quantum critical endpoint at H_c = 7.85 T. A peak in the electrical resistivity as a function of field was mimicked by the thermal resistivity. In the limit as T -> 0 K we find that the Wiedemann-Franz law is satisfied to within 5% at all fields, implying that there is no breakdown of the electron despite the destruction of the Fermi liquid state at quantum criticality. A significant change in disorder (from $rho_0$(H=0T) = 2.1 $muOmega$ cm to 0.5 $muOmega$ cm) does not influence our conclusions. At finite temperatures, the temperature dependence of the Lorenz number is consistent with ferromagnetic fluctuations causing the non-Fermi liquid behavior as one would expect at a metamagnetic quantum critical endpoint.
66 - B. Lorenz 2004
The novel field-induced re-entrant phase in multiferroic hexagonal HoMnO3 is investigated to lower temperatures by dc magnetization, ac susceptibility, and specific heat measurements at various magnetic fields. Two new phases have been unambiguously identified below the Neel transition temperature, TN=76 K, for magnetic fields up to 50 kOe. The existence of an intermediate phase between the P[6]_3[c]m and P[6]_3c[m] magnetic structures (previously predicted from dielectric measurements) was confirmed and the magnetic properties of this phase have been investigated. At low temperatures (T<5 K) a dome shaped phase boundary characterized by a magnetization jump and a narrow heat capacity peak was detected between the magnetic fields of 5 kOe and 18 kOe. The transition across this phase boundary is of first order and the magnetization and entropy jumps obey the magnetic analogue of the Clausius-Clapeyron relation. Four of the five low-temperature phases coexist at a tetracritical point at 2 K and 18 kOe. The complex magnetic phase diagram so derived provides an informative basis for unraveling the underlying driving forces for the occurrence of the various phases and the coupling between the different orders.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا