Do you want to publish a course? Click here

Novel Field-Induced Phases in HoMnO3 at Low Temperatures

67   0   0.0 ( 0 )
 Added by C. W. Chu
 Publication date 2004
  fields Physics
and research's language is English
 Authors B. Lorenz




Ask ChatGPT about the research

The novel field-induced re-entrant phase in multiferroic hexagonal HoMnO3 is investigated to lower temperatures by dc magnetization, ac susceptibility, and specific heat measurements at various magnetic fields. Two new phases have been unambiguously identified below the Neel transition temperature, TN=76 K, for magnetic fields up to 50 kOe. The existence of an intermediate phase between the P[6]_3[c]m and P[6]_3c[m] magnetic structures (previously predicted from dielectric measurements) was confirmed and the magnetic properties of this phase have been investigated. At low temperatures (T<5 K) a dome shaped phase boundary characterized by a magnetization jump and a narrow heat capacity peak was detected between the magnetic fields of 5 kOe and 18 kOe. The transition across this phase boundary is of first order and the magnetization and entropy jumps obey the magnetic analogue of the Clausius-Clapeyron relation. Four of the five low-temperature phases coexist at a tetracritical point at 2 K and 18 kOe. The complex magnetic phase diagram so derived provides an informative basis for unraveling the underlying driving forces for the occurrence of the various phases and the coupling between the different orders.



rate research

Read More

We present the design of a compact AC susceptometer for studies under arbitrarily oriented static magnetic fields, in particular magnetic fields oriented transverse to the AC excitation field. The small size of the susceptometer permits versatile use in conventional cryostats with superconducting magnet systems. The design of the susceptometer minimizes parasitic signal contributions while providing excellent thermal anchoring suitable for measurements in a wide range down to very low temperatures. The performance is illustrated by means of measurements of the transverse susceptibility at the magnetic field tuned quantum phase transition of the dipolar-coupled Ising ferromagnet LiHoF$_4$.
A re-entrant novel phase has been observed in the hexagonal ferroelectric HoMnO3 in the presence of magnetic fields, in the temperature ranges defined by the plateau of the dielectric constant anomaly. The dielectric plateau evolves with fields from a narrow sharp dielectric peak at the Mn-spin rotation transition at 32.8 K in zero magnetic field. Such a field-induced dielectric plateau anomaly appears both in the temperature sweep at a constant field and in the field sweep at a constant temperature without detectable hysteresis. This is attributed to the indirect coupling between the ferroelectric and antiferromagnetic orders, arising from an antiferromagnetic domain wall effect, where the magnetic order parameter of the Mn subsystem has to change sign across the ferroelectric domain wall in the compound, that influences the ferroelectric domains via a local magnetostrictive effect.
Analysis of neutron diffraction, dc magnetization, ac magnetic susceptibility, heat capacity, and electrical resistivity for DyRuAsO in an applied magnetic field are presented at temperatures near and below those at which the structural distortion (T_S = 25 K) and subsequent magnetic ordering (T_N = 10.5 K) take place. Powder neutron diffraction is used to determine the antiferromagnetic order of Dy moments of magnitude 7.6(1) mu_B in the absence of a magnetic field, and demonstrate the reorientation of the moments into a ferromagnetic configuration upon application of a magnetic field. Dy magnetism is identified as the driving force for the structural distortion. The magnetic structure of analogous TbRuAsO is also reported. Competition between the two magnetically ordered states in DyRuAsO is found to produce unusual physical properties in applied magnetic fields at low temperature. An additional phase transition near T* = 3 K is observed in heat capacity and other properties in fields greater than about 3 T. Magnetic fields of this magnitude also induce spin-glass-like behavior including thermal and magnetic hysteresis, divergence of zero-field-cooled and field-cooled magnetization, frequency dependent anomalies in ac magnetic susceptibility, and slow relaxation of the magnetization. This is remarkable since DyRuAsO is a stoichiometric material with no disorder detected by neutron diffraction, and suggests analogies with spin-ice compounds and related materials with strong geometric frustration.
Magnetoresistance measurements on the quasi one-dimensional organic conductor (TMTSF)_2PF_6 performed in magnetic fields B up to 16T, temperatures T down to 0.12K and under pressures P up to 14kbar have revealed new phases on its P-B-T phase diagram. We found a new boundary which subdivides the field induced spin density wave (FISDW) phase diagram into two regions. We showed that a low-temperature region of the FISDW diagram is characterized by a hysteresis behavior typical for the first order transitions, as observed in a number of studies. In contrast to the common believe, in high temperature region of the FISDW phase diagram, the hysteresis and, hence, the first order transitions were found to disappear. Nevertheless, sharp changes in the resistivity slope are observed both in the low and high temperature domains indicating that the cascade of transitions between different subphases exists over all range of the FISDW state. We also found that the temperature dependence of the resistance (at a constant B) changes sign at about the same boundary. We compare these results with recent theoretical models.
The magnetization at low temperatures for Nd0.5Sr0.5MnO3 and Nd0.5Ca0.5MnO3 samples showed a rapid increase with decreasing temperatures, contrary to a La0.5Ca0.5MnO3 sample. Specific heat measurement at low temperatures showed a Schottky-like anomaly for the first two samples. However, there is not a straight forward correlation between the intrinsic magnetic moment of the Nd3+ ions and the Schottky-like anomaly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا