Do you want to publish a course? Click here

On Chip Manipulation of Single Photons from a Diamond Defect

165   0   0.0 ( 0 )
 Added by Jake Kennard
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Operating reconfigurable quantum circuits with single photon sources is a key goal of photonic quantum information science and technology. We use an integrated waveguide device comprising of directional couplers and a reconfigurable thermal phase controller to manipulate single photons emitted from a chromium related colour centre in diamond. Observation of both a wave-like interference pattern and particle-like sub-Poissionian autocorrelation functions demonstrates coherent manipulation of single photons emitted from the chromium related centre and verifies wave particle duality.



rate research

Read More

We demonstrate heralded single photon generation in a CMOS-compatible silicon nanophotonic device. The strong modal confinement and slow group velocity provided by a coupled resonator optical waveguide (CROW) produced a large four-wave-mixing nonlinearity coefficient gamma_eff ~4100 W^-1 m^-1 at telecommunications wavelengths. Spontaneous four-wave-mixing using a degenerate pump beam at 1549.6 nm created photon pairs at 1529.5 nm and 1570.5 nm with a coincidence-to-accidental ratio exceeding 20. A photon correlation measurement of the signal (1529.5 nm) photons heralded by the detection of the idler (1570.5 nm) photons showed antibunching with g^(2)(0) = 0.19 pm 0.03. The demonstration of a single photon source within a silicon platform holds promise for future integrated quantum photonic circuits.
157 - A. Batalov , C. Zierl , T. Gaebel 2007
Photon interference among distant quantum emitters is a promising method to generate large scale quantum networks. Interference is best achieved when photons show long coherence times. For the nitrogen-vacancy defect center in diamond we measure the coherence times of photons via optically induced Rabi oscillations. Experiments reveal a close to Fourier transform (i.e. lifetime) limited width of photons emitted even when averaged over minutes. The projected contrast of two-photon interference (0.8) is high enough to envisage the applications in quantum information processing. We report 12 and 7.8 ns excited state lifetime depending on the spin state of the defect.
82 - F. Liu , A. J. Brash , J. OHara 2017
On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is by using the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot-photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission which retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under $pi$-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates.
In this report, the polarization properties of the photoluminescence emitted by single nitrogen-vacancy (NV) color centers in diamond are investigated using resonant excitation at cryogenic temperature. We first underline that the two excited-state orbital branches are associated with two orthogonal transition dipoles. Using selective excitation of one dipole, we then show that the photoluminescence is partially unpolarized owing to fast relaxation between the two orbitals induced by the thermal bath. This result might be important in the context of the realization of indistinguishable single photons using NV defect in diamond.
Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-bin encoded quantum computing, as well as dense quantum key distribution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا