Do you want to publish a course? Click here

Steady entanglement out of thermal equilibrium

140   0   0.0 ( 0 )
 Added by Bruno Bellomo
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract

rate research

Read More

Classical engines turn thermal resources into work, which is maximized for reversible operations. The quantum realm has expanded the range of useful operations beyond energy conversion, and incoherent resources beyond thermal reservoirs. This is the case of entanglement generation in a driven-dissipative protocol, which we hereby analyze as a continuous quantum machine. We show that for such machines the more irreversible the process the larger the concurrence. Maximal concurrence and entropy production are reached for the hot reservoir being at negative effective temperature, beating the limits set by classic thermal operations on an equivalent system.
115 - O. Osenda , , G.A. Raggio 2005
We revisist the issue of entanglement of thermal equilibrium states in composite quantum systems. The possible scenarios are exemplified in bipartite qubit/qubit and qubit/qutrit systems.
We address the problem of heat transport in a chain of coupled quantum harmonic oscillators, exposed to the influences of local environments of various nature, stressing the effects that the specific nature of the environment has on the phenomenology of the transport process. We study in detail the behavior of thermodynamically relevant quantities such as heat currents and mean energies of the oscillators, establishing rigorous analytical conditions for the existence of a steady state, whose features we analyse carefully. In particular we assess the conditions that should be faced to recover trends reminiscent of the classical Fourier law of heat conduction and highlight how such a possibility depends on the environment linked to our system.
We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا