Do you want to publish a course? Click here

Integral operators on analytic Morrey spaces

257   0   0.0 ( 0 )
 Added by Pengtao Li
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In this note, we study the boundedness of integral operators $I_{g}$ and $T_{g}$ on analytic Morrey spaces. Furthermore, the norm and essential norm of those operators are given.



rate research

Read More

In this paper we introduce a class of generalized Morrey spaces associated with Schrodinger operator $L=-Delta+V$. Via a pointwise estimate, we obtain the boundedness of the operators $V^{beta_{2}}(-Delta+V)^{-beta_{1}}$ and their dual operators on these Morrey spaces.
103 - Guangfu Cao , Li He , Ji Li 2021
We provide a boundedness criterion for the integral operator $S_{varphi}$ on the fractional Fock-Sobolev space $F^{s,2}(mathbb C^n)$, $sgeq 0$, where $S_{varphi}$ (introduced by Kehe Zhu) is given by begin{eqnarray*} S_{varphi}F(z):= int_{mathbb{C}^n} F(w) e^{z cdotbar{w}} varphi(z- bar{w}) dlambda(w) end{eqnarray*} with $varphi$ in the Fock space $F^2(mathbb C^n)$ and $dlambda(w): = pi^{-n} e^{-|w|^2} dw$ the Gaussian measure on the complex space $mathbb{C}^{n}$. This extends the recent result in Cao--Li--Shen--Wick--Yan. The main approach is to develop multipliers on the fractional Hermite-Sobolev space $W_H^{s,2}(mathbb R^n)$.
In this paper we discuss the multipliers between range spaces of co-analytic Toeplitz operators.
We establish that the Volterra-type integral operator $J_b$ on the Hardy spaces $H^p$ of the unit ball $mathbb{B}_n$ exhibits a rather strong rigid behavior. More precisely, we show that the compactness, strict singularity and $ell^p$-singularity of $J_b$ are equivalent on $H^p$ for any $1 le p < infty$. Moreover, we show that the operator $J_b$ acting on $H^p$ cannot fix an isomorphic copy of $ell^2$ when $p e 2.$
We obtain Calderon-Zygmund type estimates in generalized Morrey spaces for nonlinear equations of $p$-Laplacian type. Our result is obtained under minimal regularity assumptions both on the operator and on the domain. This result allows us to study asymptotically regular operators. As a byproduct, we obtain also generalized Holder regularity of the solutions under some minimal restrictions of the weight functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا