No Arabic abstract
(Abridged) We analyze chemical and kinematical properties of about 850 FGK solar neighborhood long-lived dwarfs observed with the HARPS high-resolution spectrograph. The stars in the sample have logg > 4 dex, 5000 < Teff < 6500 K, and -1.39 < [Fe/H] < 0.55 dex. We apply a purely chemical analysis approach based on the [alpha/Fe] vs. [Fe/H] plot to separate Galactic stellar populations into the thin disk, thick disk and high-alpha metal-rich (hamr). Our analysis shows a negative gradient of the rotational velocity of the thin disk stars with [Fe/H] (-17 km s^-1 dex^-1), and a steep positive gradient for both the thick disk and hamr stars with the same magnitude of about +42 km s^-1 dex^-1. For the thin disk stars we observed no correlation between orbital eccentricities and metallicity, but observed a steep negative gradient for the thick disk and hamr stars with practically the same magnitude (about -0.18 dex^-1). Our results suggest that radial migration played an important role in the formation and evolution of the thin disk. For the thick disk stars it is not possible to reach a firm conclusion about their origin. Based on the eccentricity distribution of the thick disk stars only their accretion origin can be ruled out, and the heating and migration scenario could explain the positive steep gradient of V_phi with [Fe/H]. Analyzing the hamr stellar population we found that they share properties of both the thin and thick disk population. A comparison of the properties of the hamr stars with that of the subsample of stars from the N-body/SPH simulation using radial migration suggest that they may have originated from the inner Galaxy. Further detailed investigations would help to clarify their exact nature and origin.
[ABRIDGED]We study the carbon abundances with a twofold objective. On the one hand, we want to evaluate the behaviour of carbon in the context of Galactic chemical evolution. On the other hand, we focus on the possible dependence of carbon abundances on the presence of planets and on the impact of various factors (such as different oxygen lines) on the determination of C/O elemental ratios. We derived chemical abundances of carbon from two atomic lines for 757 FGK stars in the HARPS-GTO sample. The abundances were derived with the code MOOG using automatically measured EWs and a grid of Kurucz ATLAS9 atmospheres. Oxygen abundances, derived using different lines, were taken from previous papers in this series and updated with the new stellar parameters. We find that thick- and thin-disk stars are chemically disjunct for [C/Fe] across the full metallicity range that they have in common. Moreover, the population of high-$alpha$ metal-rich stars also presents higher and clearly separated [C/Fe] ratios than thin-disk stars up to [Fe/H],$sim$,0.2,dex. The [C/O] ratios present a general flat trend as a function of [O/H] but this trend becomes negative when considering stars of similar metallicity. We find tentative evidence that stars with low-mass planets at lower metallicities have higher [C/Fe] ratios than stars without planets at the same metallicity, in the same way as has previously been found for $alpha$ elements. Finally, the elemental C/O ratios for the vast majority of our stars are below 0.8 when using the oxygen line at 6158A however, the forbidden oxygen line at 6300A provides systematically higher C/O values. Moreover, by using different atmosphere models the C/O ratios can have a non negligible difference for cool stars. Therefore, C/O ratios should be scaled to a common solar reference in order to correctly evaluate its behaviour.
In this work we present chemical abundances of heavy elements (Z$>$28) for a homogeneous sample of 1059 stars from HARPS planet search program. We also derive ages using parallaxes from Hipparcos and Gaia DR1 to compare the results. We study the [X/Fe] ratios for different populations and compare them with models of Galactic chemical evolution. We find that thick disk stars are chemically disjunt for Zn and Eu. Moreover, the high-alpha metal-rich population presents an interesting behaviour, with clear overabundances of Cu and Zn and lower abundances of Y and Ba with respect to thin disk stars. Several abundance ratios present a significant correlation with age for chemically separated thin disk stars (regardless of their metallicity) but thick disk stars do not present that behaviour. Moreover, at supersolar metallicities the trends with age tend to be weaker for several elements.
In this contribution talk we summarize the results of our ongoing project of detailed analysis of the chemical content (chemical tagging) as a promising powerful method to provide clear constraints on the membership of FGK kinematic candidates to stellar kinematic groups of different ages that can be used as an alternative or complementary to the methods that use kinematics, photometry or age indicators. This membership information is very important to better understand the star formation history in the solar neighborhood discerning between field-like stars (associated with dynamical resonances (bar) or spiral structure) and real physical structures of coeval stars with a common origin (debris of star-forming aggregates in the disk). We have already applied the chemical tagging method to constrain the membership of FGK candidate stars to the Hyades supercluster and the Ursa Major moving group and in this contribution we present the preliminary results of our study of the Castor moving group.
We determined the chemical and kinematic properties of the Galactic thin and thick disk using a sample of 307,246 A/F/G/K-type giant stars from the LAMOST spectroscopic survey and Gaia DR2 survey. Our study found that the thick disk globally exhibits no metallicity radial gradient, but the inner disk ($R le 8$ kpc) and the outer disk ($R>8$ kpc) have different gradients when they are studied separately. The thin disk also shows two different metallicity radial gradients for the inner disk and the outer disk, and has steep metallicity vertical gradient of d[Fe/H]/d$|z|$ $=-0.12pm0.0007$ dex kpc$^{-1}$, but it becomes flat when it is measured at increasing radial distance, while the metallicity radial gradient becomes weaker with increasing vertical distance. Adopting a galaxy potential model, we derived the orbital eccentricity of sample stars and found a downtrend of average eccentricity with increasing metallicity for the thick disk. The variation of the rotation velocity with the metallicity shows a positive gradient for the thick disk stars and a negative one for the thin disk stars. Comparisons of our observed results with models of disk formation suggest that radial migration could have influenced the chemical evolution of the thin disk. The formation of the thick disk could be affected by more than one processes: the accretion model could play an indispensable role, while other formation mechanisms, such as the radial migration or heating scenario model could also have a contribution.
To understand the formation and evolution of solar-type stars and planets in the solar neighborhood, we need to obtain their stellar parameters with high precision. We present a catalog of precise stellar parameters for low-activity FGK single stars in a volume-limited sample followed by the HARPS spectrograph in the quest to identify extra-solar planets. The spectroscopic analysis was completed assuming LTE with a grid of Kurucz atmosphere models and using the ARES code to perform an automatic measurement of the line equivalent widths. The results are compared with different independent methods and also with other values found in the literature for common stars. Both comparisons are consistent and illustrate the homogeneity of the parameters derived by our team. The derived metallicities of this sample reveal a somewhat different distribution for the present planet hosts, but still indicates the already known higher frequency of planets observed for the more metal-rich stars. We combine the results derived in this sample with the one from the CORALIE survey to present the largest homogeneous spectroscopic study of the metallicity-giant-planet relation using a total of 1830 stars.