Do you want to publish a course? Click here

Molecular Cloud Evolution V. Cloud Destruction by Stellar Feedback

138   0   0.0 ( 0 )
 Added by Pedro Colin
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a numerical study of the evolution of molecular clouds, from their formation by converging flows in the warm ISM, to their destruction by the ionizing feedback of the massive stars they form. We improve with respect to our previous simulations by including a different stellar-particle formation algorithm, which allows them to have masses corresponding to single stars rather than to small clusters, and with a mass distribution following a near-Salpeter stellar IMF. We also employ a simplified radiative-transfer algorithm that allows the stellar particles to feed back on the medium at a rate that depends on their mass and the local density. Our results are as follows: a) Contrary to the results from our previous study, where all stellar particles injected energy at a rate corresponding to a star of ~ 10 Msun, the dense gas is now completely evacuated from 10-pc regions around the stars within 10-20 Myr, suggesting that this feat is accomplished essentially by the most massive stars. b) At the scale of the whole numerical simulations, the dense gas mass is reduced by up to an order of magnitude, although star formation (SF) never shuts off completely, indicating that the feedback terminates SF locally, but new SF events continue to occur elesewhere in the clouds. c) The SF efficiency (SFE) is maintained globally at the ~ 10% level, although locally, the cloud with largest degree of focusing of its accretion flow reaches SFE ~ 30%. d) The virial parameter of the clouds approaches unity before the stellar feedback begins to dominate the dynamics, becoming much larger once feedback dominates, suggesting that clouds become unbound as a consequence of the stellar feedback. e) The erosion of the filaments that feed the star-forming clumps produces chains of isolated dense blobs reminiscent of those observed in the vicinity of the dark globule B68.



rate research

Read More

In previous contributions, we have presented an analytical model describing the evolution of molecular clouds (MCs) undergoing hierarchical gravitational contraction. The clouds evolution is characterized by an initial increase in its mass, density, and star formation rate (SFR) and efficiency (SFE) as it contracts, followed by a decrease of these quantities as newly formed massive stars begin to disrupt the cloud. The main parameter of the model is the maximum mass reached by the cloud during its evolution. Thus, specifying the instantaneous mass and some other variable completely determines the clouds evolutionary stage. We apply the model to interpret the observed scatter in SFEs of the cloud sample compiled by Lada et al. as an evolutionary effect so that, although clouds such as California and Orion A have similar masses, they are in very different evolutionary stages, causing their very different observed SFRs and SFEs. The model predicts that the California cloud will eventually reach a significantly larger total mass than the Orion A cloud. Next, we apply the model to derive estimated ages of the clouds since the time when approximately 25% of their mass had become molecular. We find ages from $sim 1.5$ to 27 Myr, with the most inactive clouds being the youngest. Further predictions of the model are that clouds with very low SFEs should have massive atomic envelopes constituting the majority of their gravitational mass, and that low-mass clouds ($M sim 10^3$-$10^4 , M_odot$) end their lives with a mini-burst of star formation, reaching SFRs $sim 300$-$500, M_odot$ Myr$^{-1}$. By this time, they have contracted to become compact ($sim 1$ pc) massive star-forming clumps, in general embedded within larger GMCs.
I describe the scenario of molecular cloud (MC) evolution that has emerged over the past decade or so. MCs can start out as cold atomic clouds formed by compressive motions in the warm neutral medium (WNM) of galaxies. Such motions can be driven by large-scale instabilities, or by local turbulence. The compressions induce a phase transition to the cold neutral medium (CNM) to form growing cold atomic clouds, which in their early stages may constitute thin CNM sheets. Several dynamical instabilities soon destabilize a cloud, rendering it turbulent. For solar neighborhood conditions, a cloud is coincidentally expected to become molecular, magnetically supercritical, and gravitationally dominated at roughly the same column density, $N sim 1.5 times 10^21 psc approx 10 Msun$ pc$^{-2}$. At this point, the cloud begins to contract gravitationally. However, before its global collapse is completed ($sim 10^7$ yr later), the nonlinear density fluctuations within the cloud, which have shorter local free-fall times, collapse first and begin forming stars, a few Myr after the global contraction started. Large-scale fluctuations of lower mean densities collapse later, so the formation of massive star-forming regions is expected to occur late in the evolution of a large cloud complex, while scattered low-mass regions are expected to form earlier. Eventually, the local star formation episodes are terminated by stellar feedback, which disperses the local dense gas, although more work is necessary to clarify the details and characteristic scales of this process.
We have used the AMR hydrodynamic code, MG, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15 Msun, 40 Msun, 60 Msun and 120 Msun stars into a 100 pc-diameter 16,500 Msun cloud with a roughly spherical morphology with randomly distributed high density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 Msun star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40 Msun, 60 Msun and 120 Msun star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97 Myrs, 3.97 Myrs and 3.01 Myrs respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The `cloud as a coherent structure does not survive the SN from any of these stars, but only in the 120 Msun case is the cold molecular material completely destabilised and returned to the unstable thermal phase. In the 40 Msun and 60 Msun cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.
95 - Nicola Da Rio 2017
The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high resolution near infrared spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of $sim2700$ stars. In Paper IV we used these data to study the young stellar population. Here we study the kinematic properties through radial velocities ($v_r$). The young stellar population remains kinematically associated with the molecular gas, following a $sim10:{rm{km:s}}^{-1}$ gradient along filament. However, near the center of the region, the $v_r$ distribution is slightly blueshifted and asymmetric; we suggest that this population, which is older, is slightly in foreground. We find evidence for kinematic subclustering, detecting statistically significant groupings of co-located stars with coherent motions. These are mostly in the lower-density regions of the cloud, while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically evolved cluster. The velocity dispersion $sigma_v$ varies along the filament. The ONC appears virialized, or just slightly supervirial, consistent with an old dynamical age. Here there is also some evidence for on-going expansion, from a $v_r$--extinction correlation. In the southern filament, $sigma_v$ is $sim2$--$3$ times larger than virial in the L1641N region, where we infer a superposition along the line of sight of stellar sub-populations, detached from the gas. On the contrary, $sigma_v$ decreases towards L1641S, where the population is again in agreement with a virial state.
We have used the AMR hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the mechanical energy input from a 15 solar mass star and a 40 solar mass star into a 100 pc-diameter 17000 solar mass cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15 solar mass star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40 solar mass star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5 Myrs and 4.97 Myrs respectively, the massive stars explode as supernovae (SNe). In the 15 solar mass star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over ~10^5 years before the SN remnant escapes the cloud. In the 40 solar mass star case, a significant fraction of the SN material and energy rapidly escapes the molecular cloud along the wind cavity in a few tens of kiloyears. Both SN events compress the molecular cloud material around them to higher densities (so may trigger further star formation), and strengthen the magnetic field, typically by factors of 2-3 but up to a factor of 10. Our simulations are relevant to observations of bubbles in flattened ring-like molecular clouds and bipolar HII regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا