Do you want to publish a course? Click here

EUV and X-Ray Observations of Comet Lovejoy (C/2011 W3) in the Lower Corona

136   0   0.0 ( 0 )
 Added by Patrick McCauley
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of EUV and soft X-ray emission detected toward Comet Lovejoy (C/2011 W3) during its post-perihelion traverse of the solar corona on December 16, 2011. Observations were recorded by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory and the X-Ray Telescope (XRT) aboard Hinode. A single set of contemporaneous images is explored in detail, along with prefatory consideration for time evolution using only the 171 A data. For each of the eight passbands, we characterize the emission and derive outgassing rates where applicable. As material sublimates from the nucleus and is immersed in coronal plasma, it rapidly ionizes through charge states seldom seen in this environment. The AIA data show four stages of oxygen ionization (O III - O VI) along with C IV, while XRT likely captured emission from O VII, a line typical of the corona. With a nucleus of at least several hundred meters upon approach to a perihelion that brought the comet to within 0.2 solar radii of the photosphere, Lovejoy was the most significant sungrazer in recent history. Correspondingly high outgassing rates on the order of 10^32.5 oxygen atoms per second are estimated. Assuming that the neutral oxygen comes from water, this translates to a mass-loss rate of about 9.5E9 g/s, and based only on the 171 A observations, we find a total mass loss of approximately 10^13 g over the AIA egress. Additional and supporting analyses include a differential emission measure to characterize the coronal environment, consideration for the opening angle, and a comparison of the emissions leading edge with the expected position of the nucleus.



rate research

Read More

In this work, a novel approach to explain the survival of sungrazing comets within the Roche limit is presented. It is shown that in the case of low tensile strength of the cometary nucleus, tidal splitting of the nucleus can be prevented by the reaction force caused by the sublimation of the icy constituents. The survival of Comet C/2011 W3 (Lovejoy) within the Roche limit of the Sun is, thus, the result of high tensile strength of the nucleus, or the result of the reaction force caused by the strong outgassing of the icy constituents near the Sun.
We describe the physical and orbital properties of C/2011 W3. After surviving perihelion, the comet underwent major changes (permanent loss of nuclear condensation, formation of spine tail). The process of disintegration culminated with an outburst on December 17.6 (T+1.6 d) and this delayed response is inconsistent with the rubble pile model. Probable cause was thermal stress from the heat pulse into the nucleus after perihelion, which could also produce fragmentation of sungrazers far from the Sun. The spine tail was a synchronic feature, made up of dust released at <30 m/s. Since the nucleus would have been located on the synchrone, we computed the astrometric positions of the missing nucleus as the coordinates of the points of intersection of the spine tails axis with lines of forced orbital-period variation, derived from orbital solutions based on preperihelion astrometry from the ground. The resulting osculating orbital period was 698+/-2 years, which proves that C/2011 W3 is the first major member of the predicted new, 21st-century cluster of bright Kreutz-system sungrazers. The spine tails tip contained dust 1-2 mm in diameter. The bizarre appearance of the dust tail in images taken hours after perihelion with coronagraphs on SOHO and STEREO is readily understood. The disconnection of the comets head from the preperihelion tail and the apparent activity attenuation near perihelion are both caused by sublimation of all dust at heliocentric distances smaller than ~1.8 solar radii. The tails brightness is strongly affected by forward scattering of sunlight by dust. The longest-imaged grains had a radiation-pressure parameter beta ~ 0.6, probably submicron-sized silicate grains. The place of C/2011 W3 within the hierarchy of the Kreutz system and its genealogy via a 14th century parent suggest that it is indirectly related to the celebrated sungrazer X/1106 C1.
HCN J=1-0 emission from the long-period comet C/2013 R1 (Lovejoy) was observed from the Onsala Space Observatory on multiple occasions during the month before its perihelion passage on December 22, 2013. We report detections for seven different dates, spanning heliocentric distances (R_h) decreasing from 0.94 to 0.82 au. Estimated HCN production rates are generally higher than previously reported for the same time period, but the implied increase in production rate with heliocentric distance, Q_{HCN} proportionate to R_h^{-3.2}, represent well the overall documented increase since it was first observed at R_h=1.35. The implied mean HCN abundance relative to water in R1 Lovejoy is 0.2%. We also report on a detection of HCN with the new 3 mm receiver system at Onsala Space Observatory in comet C/2014 Q2 (Lovejoy) on January 14, 2015, when its heliocentric distance was 1.3 au. Relative to comet C/2013 R1 (Lovejoy), the HCN production rate of C/2014 Q2 (Lovejoy) was more than 5 times higher at similar heliocentric distances, and the implied HCN abundance relative to water 0.09%.
124 - B. Yang , J. Keane , K. Meech 2014
Dynamically new comet C/2011 L4 (PanSTARRS) is one of the brightest comets since the great comet C/1995 O1 (Hale-Bopp). Here, we present our multi-wavelength observations of C/2011 L4 during its in-bound passage to the inner Solar system. A strong absorption band of water ice at 2.0 $mu$m was detected in the near infrared spectra, taken with the 8-m Gemini-North and 3-m IRTF telescopes. The companion 1.5 $mu$m band of water ice, however, was not observed. Spectral modeling show that the absence of the 1.5 $mu$m feature can be explained by the presence of sub-micron-sized fine ice grains. No gas lines (i.e. CN, HCN or CO) were observed pre-perihelion either in the optical or in the sub-millimeter. 3-$sigma$ upper limits to the CN and CO production rates were derived. The comet exhibited a very strong continuum in the optical and its slope seemed to become redder as the comet approached the Sun. Our observations suggest that C/2011 L4 is an unusually dust-rich comet with a dust-to-gas mass ratio $>$ 4.
We aimed to measure the H2O and dust production rates in C/2006 W3 (Christensen) with the Herschel Space Observatory at a heliocentric distance of ~ 5 AU. We have searched for emission in the H2O and NH3 ground-state rotational transitions at 557 GHz and 572 GHz, simultaneously, with HIFI onboard Herschel on UT 1.5 September 2010. Photometric observations of the dust coma in the 70 and 160 {mu}m channels were acquired with the PACS instrument on UT 26.5 August 2010. A tentative 4-{sigma} H2O line emission feature was found in the spectra obtained with the HIFI wide-band and high-resolution spectrometers, from which we derive a water production rate of $2.0(5) times 10^{27}$ molec. s$^{-1}$. A 3-{sigma} upper limit for the ammonia production rate of <$1.5 times 10^{27}$ molec. s$^{-1}$ is obtained taking into account the contribution from all hyperfine components. The blueshift of the water line detected by HIFI suggests preferential emission from the subsolar point. However, it is also possible that water sublimation occurs in small ice-bearing grains that are emitted from an active region on the nucleus surface at a speed of ~ 0.2 km s$^{-1}$. The dust thermal emission was detected in the 70 and 160 {mu}m filters, with a more extended emission in the blue channel. The dust production rates, obtained for a dust size distribution index that explains the fluxes at the photocenters of the PACS images, lie in the range 70-110 kg s$^{-1}$. Scaling the CO production rate measured post-perihelion at 3.20 and 3.32 AU, these values correspond to a dust-to-gas production rate ratio in the range 0.3-0.4. The dust production rates derived in August 2010 are roughly one order of magnitude lower than in September 2009, suggesting that the dust-to-gas production rate ratio remained approximately constant during the period when the activity became increasingly dominated by CO outgassing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا