Do you want to publish a course? Click here

HCN observations of comets C/2013 R1 (Lovejoy) and C/2014 Q2 (Lovejoy)

71   0   0.0 ( 0 )
 Added by Eva Wirstr\\\"om
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

HCN J=1-0 emission from the long-period comet C/2013 R1 (Lovejoy) was observed from the Onsala Space Observatory on multiple occasions during the month before its perihelion passage on December 22, 2013. We report detections for seven different dates, spanning heliocentric distances (R_h) decreasing from 0.94 to 0.82 au. Estimated HCN production rates are generally higher than previously reported for the same time period, but the implied increase in production rate with heliocentric distance, Q_{HCN} proportionate to R_h^{-3.2}, represent well the overall documented increase since it was first observed at R_h=1.35. The implied mean HCN abundance relative to water in R1 Lovejoy is 0.2%. We also report on a detection of HCN with the new 3 mm receiver system at Onsala Space Observatory in comet C/2014 Q2 (Lovejoy) on January 14, 2015, when its heliocentric distance was 1.3 au. Relative to comet C/2013 R1 (Lovejoy), the HCN production rate of C/2014 Q2 (Lovejoy) was more than 5 times higher at similar heliocentric distances, and the implied HCN abundance relative to water 0.09%.



rate research

Read More

We present molecular observations carried out with the IRAM 30m telescope at wavelengths around 1.15 mm towards the Oort cloud comets C/2012 S1 (ISON) and C/2013 R1 (Lovejoy) when they were at 0.6 and 1 au, respectively, from the Sun. We detect HCN, HNC, and CH3OH in both comets, together with the ion HCO+ in comet ISON and a few weak unidentified lines in comet Lovejoy, one of which might be assigned to methylamine (CH3NH2). The monitoring of the HCN J = 3-2 line showed a tenfold enhancement in comet ISON on November 14.4 UT due to an outburst of activity whose exact origin is unknown, although it might be related to some break-up of the nucleus. The set of CH3OH lines observed was used to derive the kinetic temperature in the coma, 90 K in comet ISON and 60 K in comet Lovejoy. The HNC/HCN ratios derived, 0.18 in ISON and 0.05 in Lovejoy, are similar to those found in most previous comets and are consistent with an enhancement of HNC as the comet approaches the Sun. Phosphine (PH3) was also searched for unsuccessfully in both comets through its fundamental 1-0 transition, and 3 sigma upper limits corresponding to PH3/H2O ratios 4-10 times above the solar P/O elemental ratio were derived.
The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive compositional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30m telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January - 3 February 2015. We detected 22 molecules and several isotopologues. The H$_2^{16}$O and H$_2^{18}$O production rates measured with Odin follow a periodic pattern with a period of 0.94 days and an amplitude of ~25%. The inferred isotope ratios in comet Lovejoy are $^{16}$O/$^{18}$O = 499 $pm$ 24 and D/H = 1.4 $pm$ 0.4 $times 10^{-4}$ in water, $^{32}$S/$^{34}$S = 24.7 $pm$ 3.5 in CS, all compatible with terrestrial values. The ratio $^{12}$C/$^{13}$C = 109 $pm$ 14 in HCN is marginally higher than terrestrial and $^{14}$N/$^{15}$N = 145 $pm$ 12 in HCN is half the Earth ratio. Several upper limits for D/H or 12C/13C in other molecules are reported. From our observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system.
A spectral survey in the 1 mm wavelength range was undertaken in the long-period comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy) using the 30 m telescope of the Institut de radioastronomie millimetrique (IRAM) in April and November-December 2013. We report the detection of ethylene glycol (CH$_2$OH)$_2$ (aGg conformer) and formamide (NH$_2$CHO) in the two comets. The abundances relative to water of ethylene glycol and formamide are 0.2-0.3% and 0.02% in the two comets, similar to the values measured in comet C/1995 O1 (Hale-Bopp). We also report the detection of HCOOH and CH$_3$CHO in comet C/2013 R1 (Lovejoy), and a search for other complex species (methyl formate, glycolaldehyde).
Comet composition provides critical information on the chemical and physical processes that took place during the formation of the Solar system. We report here on millimetre spectroscopic observations of the long-period bright comet C/2014 Q2 (Lovejoy) using the Atacama Pathfinder Experiment (APEX) band 1 receiver between 2015 January UT 16.948 to 18.120, when the comet was at heliocentric distance of 1.30 AU and geocentric distance of 0.53 AU. Bright comets allow for sensitive observations of gaseous volatiles that sublimate in their coma. These observations allowed us to detect HCN, CH3OH (multiple transitions), H2CO and CO, and to measure precise molecular production rates. Additionally, sensitive upper limits were derived on the complex molecules acetaldehyde (CH3CHO) and formamide (NH2CHO) based on the average of the strongest lines in the targeted spectral range to improve the signal-to-noise ratio. Gas production rates are derived using a non-LTE molecular excitation calculation involving collisions with H2O and radiative pumping that becomes important in the outer coma due to solar radiation. We find a depletion of CO in C/2014 Q2 (Lovejoy) with a production rate relative to water of 2 per cent, and relatively low abundances of Q(HCN)/Q(H2O), 0.1 per cent, and Q(H2CO)/Q(H2O), 0.2 per cent. In contrast the CH3OH relative abundance Q(CH3OH)/Q(H2O), 2.2 per cent, is close to the mean value observed in other comets. The measured production rates are consistent with values derived for this object from other facilities at similar wavelengths taking into account the difference in the fields of view. Based on the observed mixing ratios of organic molecules in four bright comets including C/2014 Q2, we find some support for atom addition reactions on cold dust being the origin of some of the molecules.
Observations of C/2014 Q2 (Lovejoy) comet were carried out on 7th February, 2015, at the observation station in Mayaki village (No. 583 -- Odesa-Mayaki observatory). The integrated-light photometry of the comet was conducted using RC-800 telescope (D = 80 cm; F = 214.0 cm) with FLI MicroLine 9000 CCD camera. The photometric primary reductions included dark-frame subtraction and flat-field correction. The photometric study of the comet plasma tails was performed using an interactive program to construct a series of longitudinal and transverse profiles of individual tail rays. The Shulman diffusion model was applied to interpret the calculated photometric profiles. The comparison of the experimental profiles and those calculated theoretically from the diffusion model enabled us to estimate the following physical parameters of the comet plasma tail: acceleration a = 176 m/sec$^2$ and lifetime of fluorescent ions $tau$ = 2.7$cdot$10$^3$ sec; longitudinal and transverse diffusion coefficients, and magnetic flux density B = 97 $pm$ 5.3 nT.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا