Do you want to publish a course? Click here

A multi-opinion evolving voter model with infinitely many phase transitions

104   0   0.0 ( 0 )
 Added by Feng Shi
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider an idealized model in which individuals changing opinions and their social network coevolve, with disagreements between neighbors in the network resolved either through one imitating the opinion of the other or by reassignment of the discordant edge. Specifically, an interaction between $x$ and one of its neighbors $y$ leads to $x$ imitating $y$ with probability $(1-alpha)$ and otherwise (i.e., with probability $alpha$) $x$ cutting its tie to $y$ in order to instead connect to a randomly chosen individual. Building on previous work about the two-opinion case, we study the multiple-opinion situation, finding that the model has infinitely many phase transitions. Moreover, the formulas describing the end states of these processes are remarkably simple when expressed as a function of $beta = alpha/(1-alpha)$.



rate research

Read More

We propose a generalized framework for the study of voter models in complex networks at the the heterogeneous mean-field (HMF) level that (i) yields a unified picture for existing copy/invasion processes and (ii) allows for the introduction of further heterogeneity through degree-selectivity rules. In the context of the HMF approximation, our model is capable of providing straightforward estimates for central quantities such as the exit probability and the consensus/fixation time, based on the statistical properties of the complex network alone. The HMF approach has the advantage of being readily applicable also in those cases in which exact solutions are difficult to work out. Finally, the unified formalism allows one to understand previously proposed voter-like processes as simple limits of the generalized model.
In this work we study opinion formation in a population participating of a public debate with two distinct choices. We considered three distinct mechanisms of social interactions and individuals behavior: conformity, nonconformity and inflexibility. The conformity is ruled by the majority-rule dynamics, whereas the nonconformity is introduced in the population as an independent behavior, implying the failure to attempted group influence. Finally, the inflexible agents are introduced in the population with a given density. These individuals present a singular behavior, in a way that their stubbornness makes them reluctant to change their opinions. We consider these effects separately and all together, with the aim to analyze the critical behavior of the system. We performed numerical simulations in some lattice structures and for distinct population sizes, and our results suggest that the different formulations of the model undergo order-disorder phase transitions in the same universality class of the Ising model. Some of our results are complemented by analytical calculations.
The flow of information reaching us via the online media platforms is optimized not by the information content or relevance but by popularity and proximity to the target. This is typically performed in order to maximise platform usage. As a side effect, this introduces an algorithmic bias that is believed to enhance polarization of the societal debate. To study this phenomenon, we modify the well-known continuous opinion dynamics model of bounded confidence in order to account for the algorithmic bias and investigate its consequences. In the simplest version of the original model the pairs of discussion participants are chosen at random and their opinions get closer to each other if they are within a fixed tolerance level. We modify the selection rule of the discussion partners: there is an enhanced probability to choose individuals whose opinions are already close to each other, thus mimicking the behavior of online media which suggest interaction with similar peers. As a result we observe: a) an increased tendency towards polarization, which emerges also in conditions where the original model would predict convergence, and b) a dramatic slowing down of the speed at which the convergence at the asymptotic state is reached, which makes the system highly unstable. Polarization is augmented by a fragmented initial population.
Machine learning has emerged as a promising approach to study the properties of many-body systems. Recently proposed as a tool to classify phases of matter, the approach relies on classical simulation methods$-$such as Monte Carlo$-$which are known to experience an exponential slowdown when simulating certain quantum systems. To overcome this slowdown while still leveraging machine learning, we propose a variational quantum algorithm which merges quantum simulation and quantum machine learning to classify phases of matter. Our classifier is directly fed labeled states recovered by the variational quantum eigensolver algorithm, thereby avoiding the data reading slowdown experienced in many applications of quantum enhanced machine learning. We propose families of variational ansatz states that are inspired directly by tensor networks. This allows us to use tools from tensor network theory to explain properties of the phase diagrams the presented method recovers. Finally, we propose a nearest-neighbour (checkerboard) quantum neural network. This majority vote quantum classifier is successfully trained to recognize phases of matter with $99%$ accuracy for the transverse field Ising model and $94%$ accuracy for the XXZ model. These findings suggest that our merger between quantum simulation and quantum enhanced machine learning offers a fertile ground to develop computational insights into quantum systems.
It is known that individual opinions on different policy issues often align to a dominant ideological dimension (e.g. left vs. right) and become increasingly polarized. We provide an agent-based model that reproduces these two stylized facts as emergent properties of an opinion dynamics in a multi-dimensional space of continuous opinions. The mechanisms for the change of agents opinions in this multi-dimensional space are derived from cognitive dissonance theory and structural balance theory. We test assumptions from proximity voting and from directional voting regarding their ability to reproduce the expected emerging properties. We further study how the emotional involvement of agents, i.e. their individual resistance to change opinions, impacts the dynamics. We identify two regimes for the global and the individual alignment of opinions. If the affective involvement is high and shows a large variance across agents, this fosters the emergence of a dominant ideological dimension. Agents align their opinions along this dimension in opposite directions, i.e. create a state of polarization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا