No Arabic abstract
We have performed quantum Monte Carlo simulations measuring the finite size and temperature superfluid response of helium-4 to the linear and rotational motion of the walls of a nanopore. Within the two-fluid model, the portion of the normal liquid dragged along with the boundaries is dependent on the type of motion and the resulting anisotropic superfluid density saturates far below unity at T=0.5 K. The origin of the saturation is uncovered by computing the spatial distribution of superfluidity, with only the core of the nanopore exhibiting any evidence of phase coherence. The superfluid core displays scaling behavior consistent with Luttinger liquid theory, thereby providing an experimental test for the emergence of a one dimensional quantum liquid.
In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without ..... (SEE THE PDF FOR THE REST OF THIS ABSTRACT)
We aim to provide engineers with an introduction to the non-equilibrium Greens function (NEGF) approach, which provides a powerful conceptual tool and a practical analysis method to treat small electronic devices quantum mechanically and atomistically. We first review the basis for the traditional, semiclassical description of carriers that has served device engineers for more than 50 years. We then describe why this traditional approach loses validity at the nanoscale. Next, we describe semiclassical ballistic transport and the Landauer-Buttiker approach to phase coherent quantum transport. Realistic devices include interactions that break quantum mechanical phase and also cause energy relaxation. As a result, transport in nanodevices are between diffusive and phase coherent. We introduce the non equilbrium Greens function (NEGF) approach, which can be used to model devices all the way from ballistic to diffusive limits. This is followed by a summary of equations that are used to model a large class of layered structures such as nanotransistors, carbon nanotubes and nanowires. An application of the NEGF method in the ballistic and scattering limits to silicon nanotransistors is discussed.
Strain engineering offers unique control to manipulate the electronic band structure of two-dimensional materials (2DMs) resulting in an effective and continuous tuning of the physical properties. Ad-hoc straining 2D materials has demonstrated novel devices including efficient photodetectors at telecommunication frequencies, enhanced-mobility transistors, and on-chip single photon source, for example. However, in order to gain insights into the underlying mechanism required to enhance the performance of the next-generation devices with strain(op)tronics, it is imperative to understand the nano- and microscopic properties as a function of a strong non-homogeneous strain. Here, we study the strain-induced variation of local conductivity of a few-layer transition-metal-dichalcogenide using a conductive atomic force microscopy. We report a novel strain characterization technique by capturing the electrical conductivity variations induced by local strain originating from surface topography at the nanoscale, which allows overcoming limitations of existing optical spectroscopy techniques. We show that the conductivity variations parallel the strain deviations across the geometry predicted by molecular dynamics simulation. These results substantiate a variation of the effective mass and surface charge density by .026 me/% and .03e/% of uniaxial strain, respectively. Furthermore, we show and quantify how a gradual reduction of the conduction band minima as a function of tensile strain explains the observed reduced effective Schottky barrier height. Such spatially-textured electronic behavior via surface topography induced strain variations in atomistic-layered materials at the nanoscale opens up new opportunities to control fundamental material properties and offers a myriad of design and functional device possibilities for electronics, nanophotonics, flextronics, or smart cloths.
Understanding transport processes in complex nanoscale systems, like ionic conductivities in nanofluidic devices or heat conduction in low dimensional solids, poses the problem of examining fluctuations of currents within nonequilibrium steady states and relating those fluctuations to nonlinear or anomalous responses. We have developed a systematic framework for computing distributions of time integrated currents in molecular models and relating cumulants of those distributions to nonlinear transport coefficients. The approach elaborated upon in this perspective follows from the theory of dynamical large deviations, benefits from substantial previous formal development, and has been illustrated in several applications. The framework provides a microscopic basis for going beyond traditional hydrodynamics in instances where local equilibrium assumptions break down, which are ubiquitous at the nanoscale.
Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid are nearly spherical away from interfaces with solids, and any local deformations due to molecular-scale surface interactions are negligible. Studies of wetting phenomena, therefore, typically assume that a liquid on a surface adopts the shape of a spherical cap. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets gradually assume distorted shapes that no longer comply with our conventional, macroscopic conception of a drop. In this regime, the contact angle becomes ambiguous, and it is unclear how to parametrize a liquids affinity for a surface. A scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink, in agreement with theoretical predictions. Ultimately, the nanoscale liquid flattens out to form layer-like molecular assemblies, instead of droplets, at the solid surface. For the lack of a consistent contact angle at small scales, we introduce a droplets adsorption energy density as a new metric for a liquids affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is properly included.