Do you want to publish a course? Click here

The Multiphase Structure and Power Sources of Galactic Winds in Major Mergers

155   0   0.0 ( 0 )
 Added by David S. N. Rupke
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z < 0.06 using deep integral field spectroscopy with the Gemini Multi-Object Spectrograph (GMOS) on Gemini North. We probe the neutral, ionized, and dusty gas phases using Na I D, strong emission lines ([O I], Halpha, and [N II]), and continuum colors, respectively. We separate outflow motions from those due to rotation and tidal perturbations, and find that all of the galaxies in our sample host high-velocity flows on kiloparsec scales. The properties of these outflows are consistent with multiphase (ionized, neutral, and dusty) collimated bipolar winds emerging along the minor axis of the nuclear disk to scales of 1-2 kpc. In two cases, these collimated winds take the form of bipolar superbubbles, identified by clear kinematic signatures. Less collimated (but still high-velocity) flows are also present on scales up to 5 kpc in most systems. The three galaxies in our sample with obscured QSOs host higher velocity outflows than those in the three galaxies with no evidence for an AGN. The peak outflow velocity in each of the QSOs is in the range 1450-3350 km/s, and the highest velocities (2000-3000 km/s) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.



rate research

Read More

We use numerical simulations to analyze the evolution and properties of superbubbles (SBs), driven by multiple supernovae (SNe), that propagate into the two-phase (warm/cold), cloudy interstellar medium (ISM). We consider a range of mean background densities n_avg=0.1-10 cm^{-3} and intervals between SNe dt_sn=0.01-1 Myr, and follow each SB until the radius reaches (1-2)H, where H is the characteristic ISM disk thickness. Except for embedded dense clouds, each SB is hot until a time t_sf,m when the shocked warm gas at the outer front cools and forms an overdense shell. Subsequently, diffuse gas in the SB interior remains at T_h 10^6-10^7K with expansion velocity v_h~10^2-10^3km/s (both highest for low dt_sn). At late times, the warm shell gas velocities are several 10s to ~100km/s. While shell velocities are too low to escape from a massive galaxy, they are high enough to remove substantial mass from dwarfs. Dense clouds are also accelerated, reaching a few to 10s of km/s. We measure the mass in hot gas per SN, M_h/N_SN, and the total radial momentum of the bubble per SN, p_b/N_SN. After t_sf,m, M_h/N_SN 10-100M_sun (highest for low n_avg), while p_b/N_SN 0.7-3x10^5M_sun km/s (highest for high dt_sn). If galactic winds in massive galaxies are loaded by the hot gas in SBs, we conclude that the mass-loss rates would generally be lower than star formation rates. Only if the SN cadence is much higher than typical in galactic disks, as may occur for nuclear starbursts, SBs can break out while hot and expel up to 10 times the mass locked up in stars. The momentum injection values, p_b/N_SN, are consistent with requirements to control star formation rates in galaxies at observed levels.
171 - Philip F. Hopkins 2013
We study galaxy super-winds driven in major mergers, using pc-resolution simulations with detailed models for stellar feedback that can self-consistently follow the formation/destruction of GMCs and generation of winds. The models include molecular cooling, star formation at high densities in GMCs, and gas recycling and feedback from SNe (I&II), stellar winds, and radiation pressure. We study mergers of systems from SMC-like dwarfs and Milky Way analogues to z~2 starburst disks. Multi-phase super-winds are generated in all passages, with outflow rates up to ~1000 M_sun/yr. However, the wind mass-loading efficiency (outflow rate divided by SFR) is similar to that in isolated galaxy counterparts of each merger: it depends more on global galaxy properties (mass, size, escape velocity) than on the dynamical state of the merger. Winds tend to be bi- or uni-polar, but multiple events build up complex morphologies with overlapping, differently-oriented bubbles/shells at a range of radii. The winds have complex velocity and phase structure, with material at a range of speeds up to ~1000 km/s, and a mix of molecular, ionized, and hot gas that depends on galaxy properties and different feedback mechanisms. These simulations resolve a problem in some sub-grid models, where simple wind prescriptions can dramatically suppress merger-induced starbursts. But despite large mass-loading factors (>~10) in the winds, the peak SFRs are comparable to those in no wind simulations. Wind acceleration does not act equally, so cold dense gas can still lose angular momentum and form stars, while blowing out gas that would not have participated in the starburst in the first place. Considerable wind material is not unbound, and falls back on the disk at later times post-merger, leading to higher post-starburst SFRs in the presence of stellar feedback. This may require AGN feedback to explain galaxy quenching.
Feedback from supernovae is an essential aspect of galaxy formation. In order to improve subgrid models of feedback we perform a series of numerical experiments to investigate how supernova explosions power galactic winds. We use the Flash hydrodynamic code to model a simplified ISM, including gravity, hydrodynamics, radiative cooling above 10,000 K, and star formation that reproduces the Kennicutt-Schmidt relation. By simulating a small patch of the ISM in a tall box perpendicular to the disk, we obtain sub-parsec resolution allowing us to resolve individual supernova events and we investigate how the wind properties depend on those of the ISM and the galaxy. We find that outflows are more efficient in disks with lower surface densities or gas fractions. A simple model in which the warm cloudy medium is the barrier that limits the expansion of blast waves reproduces the scaling of outflow properties with disk parameters at high star formation rates. The scaling we find sets the investigation of galaxy winds on a new footing, providing a physically motivated sub-grid description of winds that can be implemented in cosmological hydrodynamic simulations and phenomenological models. [Abridged]
We analyse subarcsecond resolution interferometric CO line data for twelve sub-millimetre-luminous (S850um > 5mJy) galaxies with redshifts between 1 and 3, presenting new data for four of them. Morphologically and kinematically most of the twelve systems appear to be major mergers. Five of them are well-resolved binary systems, and seven are compact or poorly resolved. Of the four binary systems for which mass measurements for both separate components can be made, all have mass ratios of 1:3 or closer. Furthermore, comparison of the ratio of compact to binary systems with that observed in local ULIRGs indicates that at least a significant fraction of the compact SMGs must also be late-stage mergers. In addition, the dynamical and gas masses we derive are most consistent with the lower end of the range of stellar masses published for these systems, favouring cosmological models in which SMGs result from mergers. These results all point to the same conclusion, that likely most of the bright SMGs with L_IR > 5x10e12L_sun are major mergers.
110 - Ariel Keselman , Adi Nusser 2012
It is widely accepted that within the framework of LCDM a significant fraction of giant-disk galaxies has recently experienced a violent galactic merger. We present numerical simulations of such major mergers of gas-rich pure disk galaxies, and focus on the innermost stellar component (bulge) of the disk remnants. The simulations have high spatial and mass resolutions, and resolve regions deep enough to allow bulge classification according to standard kinematical and structural characteristics. In agreement with recent studies we find that these bulges are dominated by stars formed in the final coalescence process. In contrast to the common interpretation of such components as classical bulges (i.e. similar to intermediate luminosity ellipticals), we find they are supported by highly coherent rotations and have Sersic indices n<2, a result leading to their classification as pseudo-bulges. Pseudo-bulge formation by gas rich major mergers of pure disks is a novel mode of pseudo-bulge formation; It complements pseudo-bulge growth by secular evolution, and it could help explain the high fractions of classically bulge-less giant disk galaxies, and pseudo-bulges found in giant Sc galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا