Do you want to publish a course? Click here

Andromeda Optical and Infrared Disk Survey I. New Insights in Wide-Field Near-IR Surface Photometry

136   0   0.0 ( 0 )
 Added by Jonathan Sick
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present wide-field near-infrared J and Ks images of the Andromeda Galaxy taken with WIRCam on the Canada-France-Hawaii Telescope (CFHT) as part of the Andromeda Optical and Infrared Disk Survey (ANDROIDS). This data set allows simultaneous observations of resolved stars and NIR surface brightness across M31s entire bulge and disk (within R=22 kpc). The primary concern of this work is the development of NIR observation and reduction methods to recover a uniform surface brightness map across the 3x1 degree disk of M31. This necessitates sky-target nodding across 27 WIRCam fields. Two sky-target nodding strategies were tested, and we find that strictly minimizing sky sampling latency does not maximize sky subtraction accuracy, which is at best 2% of the sky level. The mean surface brightness difference between blocks in our mosaic can be reduced from 1% to 0.1% of the sky brightness by introducing scalar sky offsets to each image. The true surface brightness of M31 can be known to within a statistical zeropoint of 0.15% of the sky level (0.2 mag arcsec sq. uncertainty at R=15 kpc). Surface brightness stability across individual WIRCam frames is limited by both WIRCam flat field evolution and residual sky background shapes. To overcome flat field variability of order 1% over 30 minutes, we find that WIRCam data should be calibrated with real-time sky flats. Due either to atmospheric or instrumental variations, the individual WIRCam frames have typical residual shapes with amplitudes of 0.2% of the sky after real-time flat fielding and median sky subtraction. We present our WIRCam reduction pipeline and performance analysis here as a template for future near-infrared observers needing wide-area surface brightness maps with sky-target nodding, and give specific recommendations for improving photometry of all CFHT/WIRCam programs. (Abridged)



rate research

Read More

217 - Roberto P. Mu~noz 2013
The NGVS-IR project (Next Generation Virgo Survey - Infrared) is a contiguous near-infrared imaging survey of the Virgo cluster of galaxies. It complements the optical wide-field survey of Virgo (NGVS). The current state of NGVS-IR consists of Ks-band imaging of 4 deg^2 centered on M87, and J and Ks-band imaging of 16 deg^2 covering the region between M49 and M87. In this paper, we present the observations of the central 4 deg^2 centered on Virgos core region. The data were acquired with WIRCam on the Canada-France-Hawaii Telescope and the total integration time was 41 hours distributed in 34 contiguous tiles. A survey-specific strategy was designed to account for extended galaxies while still measuring accurate sky brightness within the survey area. The average 5sigma limiting magnitude is Ks=24.4 AB mag and the 50% completeness limit is Ks=23.75 AB mag for point source detections, when using only images with better than 0.7 seeing (median seeing 0.54). Star clusters are marginally resolved in these image stacks, and Virgo galaxies with mu_Ks=24.4 AB mag arcsec^-2 are detected. Combining the Ks data with optical and ultraviolet data, we build the uiK color-color diagram which allows a very clean color-based selection of globular clusters in Virgo. This diagnostic plot will provide reliable globular cluster candidates for spectroscopic follow-up campaigns needed to continue the exploration of Virgos photometric and kinematic sub-structures, and will help the design of future searches for globular clusters in extragalactic systems. Equipped with this powerful new tool, future NGVS-IR investigations based on the uiK diagram will address the mapping and analysis of extended structures and compact stellar systems in and around Virgo galaxies.
We present a new technique for wide and shallow observations using the near-infrared channel of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Wide-field near-IR surveys with HST are generally inefficient, as guide star acquisitions make it impractical to observe more than one pointing per orbit. This limitation can be circumvented by guiding with gyros alone, which is possible as long as the telescope has three functional gyros. The method presented here allows us to observe mosaics of eight independent WFC3-IR pointings in a single orbit by utilizing the fact that HST drifts by only a very small amount in the 25 seconds between non-destructive reads of unguided exposures. By shifting the reads and treating them as independent exposures the full resolution of WFC3 can be restored. We use this drift and shift (DASH) method in the Cycle 23 COSMOS-DASH program, which will obtain 456 WFC3 $H_{160}$ pointings in 57 orbits, covering an area of 0.6 degree$^2$ in the COSMOS field down to $H_{160} = 25$. When completed, the program will more than triple the area of extra-galactic survey fields covered by near-IR imaging at HST resolution. We demonstrate the viability of the method with the first four orbits (32 pointings) of this program. We show that the resolution of the WFC3 camera is preserved, and that structural parameters of galaxies are consistent with those measured in guided observations.
114 - N. Drory 2001
The Munich Near-IR Cluster Survey (MUNICS) is a wide-area, medium-deep, photometric survey selected in the K band. It covers an area of roughly one square degree in the K and J near-IR pass-bands. The survey area consists of 16 6 x 6 fields targeted at QSOs with redshifts 0.5 < z < 2 and 7 28 x 13 stripes targeted at `random high Galactic latitude fields. Ten of the QSO fields were additionally imaged in R and I, and 0.6 square degrees of the randomly selected fields were also imaged in the V, R, and I bands. The resulting object catalogues were strictly selected in K, having a limiting magnitude (50 per cent completeness) of K ~ 19.5 mag and J ~ 21 mag, sufficiently deep to detect passively evolving systems up to a redshift of z ~ 1.5 and luminosity of 0.5 L*. The optical data reach a depth of roughly R ~ 23.5 mag. The projects main scientific aims are the identification of galaxy clusters at redshifts around unity and the selection of a large sample of field early-type galaxies at 0 < z < 1.5 for evolutionary studies. In this paper - the first in a series - we describe the surveys concept, the selection of the survey fields, the near-IR and optical imaging and data reduction, object extraction, and the construction of photometric catalogues. Finally, we show the J-K vs. K colour-magnitude diagramme and the R-J vs. J-K, V-I vs. J-K, and V-I vs. V-R colour-colour diagrammes for MUNICS objects, together with stellar population-synthesis models for different star-formation histories, and conclude that the data set presented is suitable for extracting a catalogue of massive field galaxies in the redshift range 0.5 < z < 1.5 for evolutionary studies and follow-up observations.
We present preliminary results from a wide field near-IR imaging survey that uses the Cambridge InfraRed Survey Instrument (CIRSI) on the 2.5m Isaac Newton Telescope (INT). CIRSI is a JH-band mosaic imager that contains 4 Rockwell 1024$^{2}$ HgCdTe detectors (the largest IR camera in existence), allowing us to survey approximately 4 deg^2 per night to H ~ 19. Combining CIRSI observations with the deep optical imaging from the INT Wide Field Survey, we demonstrate a reddening independent quasar selection technique based on the (g - z) / (z - H) color diagram.
We combine deep, wide-field near-IR and optical imaging to demonstrate a reddening-independent quasar selection technique based on identifying outliers in the (g-z) / (z-H) colour diagram. In three fields covering a total of ~0.7 deg^2 to a depth of m_H~18, we identified 68 quasar candidates. Follow-up spectroscopy for 32 objects from this candidate list confirmed 22 quasars (0.86<z<2.66), five with significant IR excesses. 2 of 8 quasars from a subsample with U band observations do not exhibit UVX colours. From these preliminary results, we suggest that this combined optical and near-IR selection technique has a high selection efficiency (> 65% success rate), a high surface density of candidates, and is relatively independent of reddening. We discuss the implications for star/galaxy separation for IR based surveys for quasars. We provide the coordinate list and follow-up spectroscopy for the sample of 22 confirmed quasars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا