Do you want to publish a course? Click here

Magnetic phase diagrams, domain switching and a quantum phase transition of the quasi-1D Ising-like antiferromagnet BaCo2V2O8

239   0   0.0 ( 0 )
 Added by Thomas Lorenz
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the effective Ising spin-1/2 antiferromagnetic chain system BaCo$_2$V$_2$O$_8, the magnetic-field influence is highly anisotropic. For magnetic fields along the easy axis $c$, the N{e}el order is strongly suppressed already for low fields and an incommensurate order is entered above 4 T. We present a detailed study of the magnetic phase diagrams for different magnetic field directions, which are derived from magnetization data, high-resolution thermal expansion and magnetostriction measurements as well as from the thermal conductivity. Zero-field thermal expansion data reveal that the magnetic transition is accompanied by an orthorhombic distortion within the $ab$ plane. Under ambient conditions the crystals are heavily twinned, but the domain orientation can be influenced either by applying uniaxial pressure or a magnetic field along the [100] direction. In addition, our data reveal a pronounced in-plane magnetic anisotropy for fields applied within the $ab$ plane. For $H || [110]$, the magnetic field influence on T$_N$ is weak, whereas for magnetic fields applied along [100], T$_N$ vanishes at about 10 T and the zero-field N{e}el order is completely suppressed as is confirmed by neutron diffraction data. The second-order phase transition strongly suggests a quantum critical point being present at $Hsimeq 10$ T parallel [100], where the N{e}el order probably changes to a spin-liquid state.



rate research

Read More

302 - S. Kimura , M. Matsuda , T. Masuda 2008
From neutron diffraction measurements on a quasi-1D Ising-like Co$^{rm 2+}$ spin compound BaCo$_{rm 2}$V$_{rm 2}$O$_{rm 8}$, we observed an appearance of a novel type of incommensurate ordering in magnetic fields. This ordering is essentially different from the N{ e}el-type ordering, which is expected for the classical system, and is caused by quantum fluctuation inherent in the quantum spin chain. A Tomonaga-Luttinger liquid (TLL) nature characteristic of the gapless quantum 1D system is responsible for the realization of the incommensurate ordering.
BaCo2V2O8 is a nice example of a quasi-one-dimensional quantum spin system that can be described in terms of Tomonaga-Luttinger liquid physics. This is explored in the present study where the magnetic field-temperature phase diagram is thoroughly established up to 12 T using single-crystal neutron diffraction. The transition from the Neel phase to the incommensurate longitudinal spin density wave (LSDW) phase through a first-order transition, as well as the critical exponents associated with the paramagnetic to ordered phase transitions, and the magnetic order both in the Neel and in the LSDW phase are determined, thus providing a stringent test for the theory.
177 - S. Nellutla , M. Pati , Y.-J. Jo 2009
The magnetic properties of alkali-metal peroxychromate K$_2$NaCrO$_8$ are governed by the $S = 1/2$ pentavalent chromium cation, Cr$^{5+}$. Specific heat, magnetocalorimetry, ac magnetic susceptibility, torque magnetometry, and inelastic neutron scattering data have been acquired over a wide range of temperature, down to 60 mK, and magnetic field, up to 18 T. The magnetic interactions are quasi-two-dimensional prior to long-range ordering, where $T_N = 1.66$ K in $H = 0$. In the $T to 0$ limit, the magnetic field tuned antiferromagnetic-ferromagnetic phase transition suggests a critical field $H_c = 7.270$ T and a critical exponent $alpha = 0.481 pm 0.004$. The neutron data indicate the magnetic interactions may extend over intra-planar nearest-neighbors and inter-planar next-nearest-neighbor spins.
To harness technological opportunities arising from optically controlled quantum many-body states a deeper theoretical understanding of driven-dissipative interacting systems and their nonequilibrium phase transitions is essential. Here we provide numerical evidence for a dynamical phase transition in the nonequilibrium steady state of interacting magnons in the prototypical two-dimensional Heisenberg antiferromagnet with drive and dissipation. This nonthermal transition is characterized by a qualitative change in the magnon distribution, from subthermal at low drive to a generalized Bose-Einstein form including a nonvanishing condensate fraction at high drive. A finite-size analysis reveals static and dynamical critical scaling, with a discontinuous slope of the magnon number versus driving field strength and critical slowing down at the transition point. Implications for experiments on quantum materials and polariton condensates are discussed.
Unlike random potentials, quasi-periodic modulation can induce localisation-delocalisation transitions in one dimension. In this article, we analyse the implications of this for symmetry breaking in the quasi-periodically modulated quantum Ising chain. Although weak modulation is irrelevant, strong modulation induces new ferromagnetic and paramagnetic phases which are fully localised and gapless. The quasi-periodic potential and localised excitations lead to quantum criticality that is intermediate to that of the clean and randomly disordered models with exponents of $ u=1^{+}$, and $zapprox 1.9$, $Delta_sigma approx 0.16$, $Delta_gammaapprox 0.63$ (up to logarithmic corrections). Technically, the clean Ising transition is destabilized by logarithmic wandering of the local reduced couplings. We conjecture that the wandering coefficient $w$ controls the universality class of the quasi-periodic transition and show its stability to smooth perturbations that preserve the quasi-periodic structure of the model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا