No Arabic abstract
In this work we present the implementation of generators for W and Z bosons in association with two jets interfaced to parton showers using the POWHEG BOX. We incorporate matrix elements from the parton-level Monte Carlo program MCFM in the POWHEG BOX, allowing for a considerable improvement in speed compared to previous implementations. We address certain problems that arise when processes that are singular at the Born level are implemented in a shower framework using either a generation cut or a Born suppression factor to yield weighted events. In such a case, events with very large weights can be generated after the shower through a number of mechanisms. Events with very small transverse momentum at the Born level can develop large transverse momentum either after the hardest emission, after the shower, or after the inclusion of multi-parton interactions. We present a solution to this problem that can be easily implemented in the POWHEG BOX. We also show that a full solution to this problem can only be achieved if the generator maintains physical validity also when the transverse momentum of the emitted partons becomes unresolved. One such scheme is the recently-proposed MiNLO method for the choice of scale and the exponentiation of Sudakov form factors in NLO computations. We present a validation study of our generators, by comparing their output to available LHC data.
Investigating the polarization of weak bosons provides an important probe of the scalar and gauge sector of the Standard Model. This can be done in the Higgs decay to four leptons, whose Standard-Model leading-order amplitude enables to generate polarized observables from unpolarized ones via a fully-differential reweighting method. We study the Z-boson polarization from the decay of a Higgs boson produced in association with two jets, both in the gluon-fusion and in the vector-boson fusion channel. We also address the possibility of extending the results of this work to higher orders in perturbation theory.
We extend and improve upon our previous calculation of electroweak top-quark pair hadroproduction in extensions of the Standard Model with extra heavy neutral and charged spin-1 resonances. In particular, we allow for flavour-non-diagonal $Z$ couplings and take into account non-resonant production in the SM and beyond including the contributions with $t$-channel $W$ and $W$ bosons. All amplitudes are generated using the Recola2 package. As in our previous work, we include NLO QCD corrections and consistently match to parton showers with the POWHEG method fully taking into account the interference effects between SM and new physics amplitudes. We consider the Sequential Standard Model, the Topcolour model, as well as the Third Family Hypercharge Model featuring non-flavour-diagonal $Z$ couplings which has been proposed recently to explain the anomalies in $B$ decays. We present numerical results for $t bar t$ cross sections at hadron colliders with a centre-of-mass energy up to 100 TeV.
The study of the Higgs boson properties is one of the most important tasks to be accomplished in the next years, at the Large Hadron Collider (LHC) and at future colliders such as the Future Circular Collider in hadron-hadron mode (FCC-hh), the potential 100 TeV follow-up of the LHC machine. In this view the precise study of the Higgs couplings to weak gauge bosons is crucial and requires as much information as possible. After the recent calculation of the next-to-leading order QCD corrections to the production cross sections and differential distributions of a Standard Model Higgs boson in association with a pair of weak bosons, matched with parton shower in the POWHEG-BOX framework, we present the gluon fusion correction $g gto H W^+_{} W^-_{} ( H Z Z)$ to the process $p p to H W^+_{} W^-_{} (H Z Z)$. This correction can be sizeable and amounts to $+3,%$ ($+10,%$) in the $H W^+_{} W^-_{}$ process and $+5,%$ ($+18,%$) in the $H Z Z$ process at the LHC (FCC-hh). We also present the first study of the impact of the bottom--quark initiated channels $bbar{b}to H W^+_{} W^-_{} / H Z Z$ and find that they induce a significant $+18,%$ correction in the $H W^+_{} W^-_{}$ channel at the FCC-hh. We present results on total cross sections and distributions at the LHC and at the FCC-hh.
We present an implementation of the vector boson pair production processes ZZ, W+W- and WZ within the POWHEG BOX V2. This implementation, derived from the POWHEG BOX version, has several improvements over the old one, among which the inclusion of all decay modes of the vector bosons, the possibility to generate different decay modes in the same run, speed optimization and phase space improvements in the handling of interference and singly resonant contributions.
The hadronic production of a Higgs boson (H) in association with b jets will play an important role in investigating the Higgs-boson couplings to Standard Model particles during Run II of the CERN Large Hadron Collider, and could in particular reveal the presence of anomalies in the assumed hierarchy of Yukawa couplings to the third-generation quarks. A very high degree of accuracy in the theoretical description of this process is crucial to implement the rich physics program that could lead to either direct or indirect evidence of new physics from Higgs-boson measurements. Aiming for accuracy in the theoretical modeling of H+b-jet production, we have interfaced the analytic Next-to-Leading-Order QCD calculation of H-bottom-antibottom production with parton-shower Monte Carlo event generators in the POWHEG BOX framework. In this paper we describe the most relevant aspects of the implementation and present results for the production of H+1 b jet, H+2 b jets, and $H$ with no tagged b jets, in the form of kinematic distributions of the Higgs boson, of the b jets, and of the non-b jets, at the 13 TeV Large Hadron Collider. The corresponding code is part of the public release of the POWHEG BOX.