Do you want to publish a course? Click here

Higgs boson production in association with b jets in the POWHEG BOX

75   0   0.0 ( 0 )
 Added by Laura Reina
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The hadronic production of a Higgs boson (H) in association with b jets will play an important role in investigating the Higgs-boson couplings to Standard Model particles during Run II of the CERN Large Hadron Collider, and could in particular reveal the presence of anomalies in the assumed hierarchy of Yukawa couplings to the third-generation quarks. A very high degree of accuracy in the theoretical description of this process is crucial to implement the rich physics program that could lead to either direct or indirect evidence of new physics from Higgs-boson measurements. Aiming for accuracy in the theoretical modeling of H+b-jet production, we have interfaced the analytic Next-to-Leading-Order QCD calculation of H-bottom-antibottom production with parton-shower Monte Carlo event generators in the POWHEG BOX framework. In this paper we describe the most relevant aspects of the implementation and present results for the production of H+1 b jet, H+2 b jets, and $H$ with no tagged b jets, in the form of kinematic distributions of the Higgs boson, of the b jets, and of the non-b jets, at the 13 TeV Large Hadron Collider. The corresponding code is part of the public release of the POWHEG BOX.



rate research

Read More

We present results from the analytic calculation of top+antitop+Higgs hadronic production at Next-to-Leading Order in QCD interfaced with parton-shower Monte Carlo event generators in the POWHEG BOX framework. We consider kinematic distributions of the top quark and Higgs boson at the 8 TeV Large Hadron Collider and study the theoretical uncertainties due to specific choices of renormalization/factorization scales and parton-showering algorithms, namely PYTHIA and HERWIG. The importance of spin-correlations in the production and decay stages of a top/antitop quark is discussed on the example of kinematic distributions of leptons originating from the top/antitop decays. The corresponding code is now part of the public release of the POWHEG BOX.
We present a detailed phenomenological analysis of the production of a Standard Model Higgs boson in association with up to three jets. We consider the gluon fusion channel using an effective theory in the large top-quark mass limit. Higgs boson production in gluon fusion constitutes an irreducible background to the vector boson fusion (VBF) process; hence the precise knowledge of its characteristics is a prerequisite for any measurement in the VBF channel. The calculation is carried out at next-to-leading order (NLO) in QCD in a fully automated way by combining the two programs GoSam and Sherpa. We present numerical results for a large variety of observables for both standard cuts and VBF selection cuts. We find that for all jet multiplicities the NLO corrections are sizeable. This is particularly true in the presence of kinematic selections enhancing the VBF topology, which are based on vetoing additional jet activity. In this case, precise predictions for the background can be made using our calculation by taking the difference between the inclusive H+2 jets and the inclusive H+3 jets result.
In these proceedings, we present results for Higgs production at the LHC via gluon fusion with triple real emission corrections and the validity range of the heavy-top effective theory approximation for this process. For a general CP-violating Higgs boson, we show that bottom-quark loop corrections in combination with large values of $tan beta $ significantly distort differential distributions.
The first computation of Higgs production in association with three jets at NLO in QCD has recently been performed using the effective theory, where the top quark is treated as an infinitely heavy particle and integrated out. This approach is restricted to the regions in phase space where the typical scales are not larger than the top quark mass. Here we investigate this statement at a quantitative level by calculating the leading-order contributions to the production of a Standard Model Higgs boson in association with up to three jets taking full top-quark and bottom-quark mass dependence into account. We find that the transverse momentum of the hardest particle or jet plays a key role in the breakdown of the effective theory predictions, and that discrepancies can easily reach an order of magnitude for transverse momenta of about 1 TeV. The impact of bottom-quark loops are found to be visible in the small transverse momentum region, leading to corrections of up to 5 percent. We further study the impact of mass corrections when VBF selection cuts are applied and when the center-of-mass energy is increased to 100 TeV.
We analyse the production of a Higgs boson in association with a top--antitop-quark pair in the Standard Model at the LHC. Considering the final state consisting of four b jets, two jets, one identified charged lepton and missing energy, we examine the irreducible background for the production rate and several kinematical distributions. While ttH production and decay is roughly a fourth of the full process for the final state specified above, ttbb production constitutes the main contribution with about $92%$. Surprisingly, interference effects result in a reduction of the cross-section by five per cent. Furthermore, we consider NLO QCD corrections for the production of a Higgs boson, two charged leptons, two neutrinos, and two b jets. We discuss the size of the corrections and the scale dependence for the integrated cross section and different distributions. For the integrated cross section we find a $K$ factor of 1.17 and a reduction of the scale dependence from $30%$ at leading order to $5%$ at next-to-leading order.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا