Do you want to publish a course? Click here

Experimental Methods for Generating Two-Dimensional Quantum Turbulence in Bose-Einstein Condensates

122   0   0.0 ( 0 )
 Added by Brian P. Anderson
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bose-Einstein condensates of dilute gases are well-suited for investigations of vortex dynamics and turbulence in quantum fluids, yet there has been little experimental research into the approaches that may be most promising for generating states of two-dimensional turbulence in these systems. Here we give an overview of techniques for generating the large and disordered vortex distributions associated with two-dimensional quantum turbulence. We focus on describing methods explored in our Bose-Einstein condensation laboratory, and discuss the suitability of these methods for studying various aspects of two-dimensional quantum turbulence. We also summarize some of the open questions regarding our own understanding of these mechanisms of two-dimensional quantum turbulence generation in condensates. We find that while these disordered distributions of vortices can be generated by a variety of techniques, further investigation is needed to identify methods for obtaining quasi-steady-state quantum turbulence in condensates.



rate research

Read More

We study two-dimensional quantum turbulence in miscible binary Bose-Einstein condensates in either a harmonic trap or a steep-wall trap through the numerical simulations of the Gross-Pitaevskii equations. The turbulence is generated through a Gaussian stirring potential. When the condensates have unequal intra-component coupling strengths or asymmetric trap frequencies, the turbulent condensates undergo a dramatic decay dynamics to an interlaced array of vortex-antidark structures, a quasi-equilibrium state, of like-signed vortices with an extended size of the vortex core. The time of formation of this state is shortened when the parameter asymmetry of the intra-component couplings or the trap frequencies are enhanced. The corresponding spectrum of the incompressible kinetic energy exhibits two noteworthy features: (i) a $k^{-3}$ power-law around the range of the wave number determined by the spin healing length (the size of the extended vortex-core) and (ii) a flat region around the range of the wave number determined by the density healing length. The latter is associated with the small scale phase fluctuation relegated outside the Thomas-Fermi radius and is more prominent as the strength of intercomponent interaction approaches the strength of intra-component interaction. We also study the impact of the inter-component interaction to the cluster formation of like-signed vortices in an elliptical steep-wall trap, finding that the inter-component coupling gives rise to the decay of the clustered configuration.
We propose a scheme for generating two-dimensional turbulence in harmonically trapped atomic condensates with the novelty of controlling the polarization (net rotation) of the turbulence. Our scheme is based on an initial giant (multicharged) vortex which induces a large-scale circular flow. Two thin obstacles, created by blue-detuned laser beams, speed up the decay of the giant vortex into many singly-quantized vortices of the same circulation; at the same time, vortex-antivortex pairs are created by the decaying circular flow past the obstacles. Rotation of the obstacles against the circular flow controls the relative proportion of positive and negative vortices, from the limit of strongly anisotropic turbulence (almost all vortices having the same sign) to that of isotropic turbulence (equal number of vortices and antivortices). Using the new scheme, we numerically study quantum turbulence and report on its decay as a function of the polarization.
We investigate two-dimensional turbulence in finite-temperature trapped Bose-Einstein condensates within damped Gross-Pitaevskii theory. Turbulence is produced via circular motion of a Gaussian potential barrier stirring the condensate. We systematically explore a range of stirring parameters and identify three regimes, characterized by the injection of distinct quantum vortex structures into the condensate: (A) periodic vortex dipole injection, (B) irregular injection of a mixture of vortex dipoles and co-rotating vortex clusters, and (C) continuous injection of oblique solitons that decay into vortex dipoles. Spectral analysis of the kinetic energy associated with vortices reveals that regime (B) can intermittently exhibit a Kolmogorov $k^{-5/3}$ power law over almost a decade of length or wavenumber ($k$) scales. The kinetic energy spectrum of regime (C) exhibits a clear $k^{-3/2}$ power law associated with an inertial range for weak-wave turbulence, and a $k^{-7/2}$ power law for high wavenumbers. We thus identify distinct regimes of forcing for generating either two-dimensional quantum turbulence or classical weak-wave turbulence that may be realizable experimentally.
We apply a kinetic model to predict the existence of an instability mechanism in elongated Bose-Einstein condensates. Our kinetic description, based on the Wigner formalism, is employed to highlight the existence of unstable Bogoliubov waves that may be excited in the counterpropagation configuration. We identify a dimensionless parameter, the Mach number at T = 0, that tunes different regimes of stability. We also estimate the magnitude of the main parameters at which two-stream instability is expected to be observed under typical experimental conditions.
In a recent experiment, Kwon et. al (arXiv:1403.4658 [cond-mat.quant-gas]) generated a disordered state of quantum vortices by translating an oblate Bose-Einstein condensate past a laser-induced obstacle and studying the subsequent decay of vortex number. Using mean-field simulations of the Gross-Pitaevskii equation, we shed light on the various stages of the observed dynamics. We find that the flow of the superfluid past the obstacle leads initially to the formation of a classical-like wake, which later becomes disordered. Following removal of the obstacle, the vortex number decays due to vortices annihilating and reaching the boundary. Our results are in excellent agreement with the experimental observations. Furthermore, we probe thermal effects through phenomenological dissipation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا