Do you want to publish a course? Click here

Electronic Structure and Resonant X-ray Emission Spectra of Carbon Shells of Iron Nanoparticles

158   0   0.0 ( 0 )
 Added by Danil Boukhvalov W
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic structure of carbon shells of carbon encapsulated iron nanoparticles carbon encapsulated Fe@C has been studied by X-ray resonant emission and X-ray absorption spectroscopy. The recorded spectra have been compared to the density functional calculations of the electronic structure of graphene. It has been shown that an Fe@C carbon shell can be represented in the form of several graphene layers with Stone-Wales defects. The dispersion of energy bands of Fe@C has been examined using the measured C Ka resonant X-ray emission spectra.



rate research

Read More

Electronic structure of V$_{15}$ magnetic molecules (K$_6$ [V$_{15}$ As$_6$ O$_{42}$ (H$_2$O)] cdot 8H$_2$O)$ has been studied using LSDA+U band structure calculations, and measurements of X-ray photoelectron (valence band, core levels) and X-ray fluorescence spectra (vanadium K$beta_5$ and L$_{2,3}$, and oxygen K$alpha$). Experiments confirm that vanadium ions are tetravalent in V$_{15}$, and their local atomic structure is close to that of CaV$_3$O$_7$. Comparison of experimental data with the results of electronic structure calculations show that the LSDA+U method provides a description of the electronic structure of V$_{15}$ which agrees well with experiments.
The electronic structure of the nanolaminated transition metal carbide Ti2AlC has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Ti L, C K and Al L emission spectra are compared with calculated spectra using ab initio density-functional theory including dipole matrix elements. The detailed investigation of the electronic structure and chemical bonding provides increased understanding of the physical properties of this type of nanolaminates. Three different types of bond regions are identified; the relatively weak Ti 3d - Al 3p hybridization 1 eV below the Fermi level, and the Ti 3d - C 2p and Ti 3d - C 2s hybridizations which are stronger and deeper in energy are observed around 2.5 eV and 10 eV below the Fermi level, respectively. A strongly modified spectral shape of the 3s final states in comparison to pure Al is detected for the buried Al monolayers indirectly reflecting the Ti 3d - Al 3p hybridization. The differences between the electronic and crystal structures of Ti2AlC, Ti3AlC2 and TiC are discussed in relation to the number of Al layers per Ti layer in the two former systems and the corresponding change of the unusual materials properties.
Soft x-ray emission and absorption spectroscopy of the O K-edge are employed to investigate the electronic structure of wurtzite ZnO(0001). A quasiparticle band structure calculated within the GW approximation agrees well with the data, most notably with the energetic location of the Zn3d - O2p hybridized state and the anisotropy of the absorption spectra. Dispersion in the band structure is mapped using the coherent k-selective part of the resonant x-ray emission spectra. We show that a more extensive mapping of the bands is possible in the case of crystalline anisotropy such as that found in ZnO.
Angle-resolved photoelectron spectroscopy (ARPES) is the main experimental tool to explore electronic structure of solids resolved in the electron momentum k . Soft-X-ray ARPES (SX-ARPES), operating in a photon energy range around 1 keV, benefits from enhanced probing depth compared to the conventional VUV-range ARPES, and elemental/chemical state specificity achieved with resonant photoemission. These advantages make SX-ARPES ideally suited for buried heterostructure and impurity systems, which are at the heart of current and future electronics. These applications are illustrated here with a few pioneering results, including buried quantum-well states in semiconductor and oxide heterostructures, their bosonic coupling critically affecting electron transport, magnetic impurities in diluted magnetic semiconductors and topological materials, etc. High photon flux and detection efficiency are crucial for pushing the SX-ARPES experiment to these most photon-hungry cases.
We report the results of X-ray spectroscopy and Raman measurements of as-prepared graphene on a high quality copper surface and the same materials after 1.5 years under different conditions (ambient and low humidity). The obtained results were compared with density functional theory calculations of the formation energies and electronic structures of various structural defects in graphene/Cu interfaces. For evaluation of the stability of the carbon cover, we propose a two-step model. The first step is oxidation of the graphene, and the second is perforation of graphene with the removal of carbon atoms as part of the carbon dioxide molecule. Results of the modeling and experimental measurements provide evidence that graphene grown on high-quality copper substrate becomes robust and stable in time (1.5 years). However, the stability of this interface depends on the quality of the graphene and the number of native defects in the graphene and substrate. The effect of the presence of a metallic substrate with defects on the stability and electronic structure of graphene is also discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا