No Arabic abstract
Of the 350 or more known Galactic classical novae, only a handful of them, the recurrent novae, have been observed in outburst more than once. At least eight of these recurrents are known to harbour evolved secondary stars, rather than the main sequence secondaries typical in classical novae. Here we present a selection of the work and rationale that led to the proposal of a new nova classification scheme based not on the outburst properties but on the nature of the quiescent system. Also outlined are the results of a photometric survey of a sample of quiescent Galactic novae, showing that the evolutionary state of the secondary can be easily determined and leading to a number of predictions. We discuss the implications of these results, including their relevance to extragalactic work and the proposed link to type Ia supernovae. We also present a summary of the work using the SMEI instrument to produce exquisite nova light-curves and confirmation of the pre-maximum halt.
We present a survey of M31 novae in quiescence. This is the first catalogue of extragalactic systems in quiescence and contains 37 spectroscopically confirmed novae from 2006 to 2013. We used Liverpool Telescope and Faulkes Telescope North images taken during outburst to identify accurate positions for each system. These positions were then transformed to archival Hubble Space Telescope (HST) images and we performed photometry on any resolvable source that was consistent with the transformed positions. As red giants in M31 will be resolvable in the HST images, we can detect systems with red giant secondaries. There are only a few confirmed examples of such systems in our Galaxy (e.g. RS Oph and T CrB). However, we find a much higher portion of the nova population in M31 may contain red giant secondaries. For some novae, coincident HST images had been taken when the nova was still fading, allowing us to produce light curves that go fainter than is possible to achieve for most extragalactic systems. Finally, we compare the M31 and Galactic quiescent nova populations.
Nova V2491 Cyg is one of just two detected pre-outburst in X-rays. The light curve of this nova exhibited a rare re-brightening which has been attributed by some as the system being a polar, whilst others claim that a magnetic WD is unlikely. By virtue of the nature of X-ray and spectroscopic observations the system has been proposed as a recurrent nova, however the adoption of a 0.1 day orbital period is generally seen as incompatible with such a system. In this research note we address the nature of the progenitor system and the source of the 0.1 day periodicity. Through the combination of Liverpool Telescope observations with published data and archival 2MASS data we show that V2491 Cyg, at a distance of 10.5 - 14 kpc, is likely to be a recurrent nova of the U Sco-class; containing a sub-giant secondary and an accretion disk, rather than accretion directly onto the poles. We show that there is little evidence, at quiescence, supporting a ~ 0.1 day periodicity, the variation seen at this stage is likely caused by flickering of a re-established accretion disk. We propose that the periodicity seen shortly after outburst is more likely related to the outburst rather than the - then obscured - binary system. Finally we address the distance to the system, and show that a significantly lower distance (~ 2 kpc) would result in a severely under-luminous outburst, and as such favour the larger distance and the recurrent nova scenario.
Despite its fundamental importance, a reliable estimate of the Galactic nova rate has remained elusive. Here, the overall Galactic nova rate is estimated by extrapolating the observed rate for novae reaching $mleq2$ to include the entire Galaxy using a two component disk plus bulge model for the distribution of stars in the Milky Way. The present analysis improves on previous work by considering important corrections for incompleteness in the observed rate of bright novae and by employing a Monte Carlo analysis to better estimate the uncertainty in the derived nova rates. Several models are considered to account for differences in the assumed properties of bulge and disk nova populations and in the absolute magnitude distribution. The simplest models, which assume uniform properties between bulge and disk novae, predict Galactic nova rates of $sim$50 to in excess of 100 per year, depending on the assumed incompleteness at bright magnitudes. Models where the disk novae are assumed to be more luminous than bulge novae are explored, and predict nova rates up to 30% lower, in the range of $sim$35 to $sim$75 per year. An average of the most plausible models yields a rate of $50_{-23}^{+31}$ yr$^{-1}$, which is arguably the best estimate currently available for the nova rate in the Galaxy. Virtually all models produce rates that represent significant increases over recent estimates, and bring the Galactic nova rate into better agreement with that expected based on comparison with the latest results from extragalactic surveys.
We present and discuss accurate and densely mapped BVRI lightcurves of the neon Nova Mon 2012, supplemented by the evolution in Stromgren b and y bands and in the integrated flux of relevant emission lines. Our monitoring started with the optical discovery of the nova and extend to day +270, well past the end of the super-soft phase in X-rays. The nova displayed very smoothly evolving lightcurves. A bifurcation between y and V light-curves took place at the start of the SSS phase, and a knee developed toward the end of the SSS phase. The apparent magnitude of the nova at the unobserved optical maximum is constrained to +2.8=<V=<4.2. The appearance, grow in amplitude and then demise of a 0.29585 (+/-0.00002) days orbital modulation of the optical brightness was followed along the nova evolution. The observed modulation has a near-sinusoidal shape and a weak secondary minimum at phase 0.5. We favor an interpretation in terms of super-imposed ellipsoidal distortion of the Roche lobe filling companion and irradiation of its side facing the WD. Similar lightcurves are typical of symbiotic stars where a Roche lobe filling giant is irradiated by a very hot WD. Given the high orbital inclination, mutual occultation between the donor star and the accretion disk could contribute to the observed modulation. The optical+infrared spectral energy distribution of Nova Mon 2012 during the quiescence preceeding the outburst is nicely fitted by a early K-type main-sequence star (~K3V) at 1.5 kpc distance, reddened by E(B-V)=0.38, with a WD companion and an accretion disk contributing to the observed blue excess and moderate Halpha emission. A typical early K-type main-sequence star with a mass of ~0.75 Msun and a radius of ~0.8 Rsun, would fill its Roche lobe for a P=0.29585 day orbital period and a more massive WD companion.
We undertake a statistical analysis of the radial abundance distributions in the Galactic disk within a theoretical framework for Galactic chemical evolution which incorporates the influence of spiral arms. 1) The mean mass of oxygen ejected per core-collapse SNe (CC SNe) event (which are concentrated within spiral arms) is $sim$0.27 M$_{odot}$; 2) the mean mass of iron ejected by `tardy Type Ia SNe (SNeIa; progenitors of whom are older/longer-lived stars with ages $simgt$100 Myr and up to several Gyr, which do not concentrate within spiral arms) is $sim$0.58 M$_{odot}$; 3) the upper mass of iron ejected by prompt SNeIa (SNe whose progenitors are younger/shorter-lived stars with ages $simlt$100 Myr, which are concentrated within spiral arms) is $leq$0.23 M$_{odot}$ per event; 4) the corresponding mean mass of iron produced by CC SNe is $leq$0.04 M$_{odot}$ per event; (v) short-lived SNe (core-collapse or prompt SNeIa) supply $sim$85% of the Galactic disks iron. The inferred low mean mass of oxygen ejected per CC SNe event implies a low upper mass limit for the corresponding progenitors of $sim$23 M$_{odot}$, otherwise the Galactic disk would be overabundant in oxygen. The low mean mass of iron ejected by prompt SNeIa, relative to the mass produced by tardy SNeIa ($sim$2.5 times lower), prejudices the idea that both sub-populations of SNeIa have the same physical nature. We suggest that, perhaps, prompt SNeIa are more akin to CC SNe, and discuss the implications of such a suggestion.