Do you want to publish a course? Click here

Initial coefficient bounds for certain classes of Meromorphic bi-univalent functions

234   0   0.0 ( 0 )
 Added by Murat Caglar
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we extend the concept of bi-univalent to the class of meromorphic functions. We propose to investigate the coefficient estimates for two classes of meromorphic bi-univalent functions. Also, we find estimates on the coefficients |b0| and |b1| for functions in these new classes. Some interesting remarks and applications of the results presented here are also discussed.



rate research

Read More

303 - H. Orhan , N. Magesh , V.K.Balaji 2013
Inspired by the recent works of Srivastava et al. (HMS-AKM-PG), Frasin and Aouf (BAF-MKA) and others (Ali-Ravi-Ma-Mina-class,Caglar-Orhan,Goyal-Goswami,Xu-HMS-AML,Xu-HMS-AMC), we propose to investigate the coefficient estimates for a general class of analytic and bi-univalent functions. Also, we obtain estimates on the coefficients |a2| and |a3| for functions in this new class. Some interesting remarks, corollaries and applications of the results presented here are also discussed.
239 - H. Orhan , N. Magesh , J. Yamini 2015
In the present work, we propose to investigate the second Hankel determinant inequalities for certain class of analytic and bi-univalent functions. Some interesting applications of the results presented here are also discussed.
In the present work, we propose to investigate the Fekete-Szego inequalities certain classes of analytic and bi-univalent functions defined by subordination. The results in the bounds of the third coefficient which improve many known results concerning different classes of bi-univalent functions. Some interesting applications of the results presented here are also discussed.
Let $mathcal{S}$ denote the family of all functions that are analytic and univalent in the unit disk $mathbb{D}:={z: |z|<1}$ and satisfy $f(0)=f^{prime}(0)-1=0$. In the present paper, we consider certain subclasses of univalent functions associated with the exponential function, and obtain the sharp upper bounds on the initial coefficients and the difference of initial successive coefficients for functions belonging to these classes.
201 - N. Magesh , J. Nirmala , J. Yamini 2020
In this work, we consider certain class of bi-univalent functions related with shell-like curves related to $kappa-$Fibonacci numbers. Further, we obtain the estimates of initial Taylor-Maclaurin coefficients (second and third coefficients) and Fekete - Szeg{o} inequalities. Also we discuss the special cases of the obtained results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا