Do you want to publish a course? Click here

Angle-Dependent Spin-Wave Resonance Spectroscopy of (Ga,Mn)As Films

281   0   0.0 ( 0 )
 Added by Lukas Dreher
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [Bihler et al., Phys. Rev. B 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of electrochemical capacitance-voltage measurements and angle-dependent standing spin-wave resonance spectroscopy. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.



rate research

Read More

220 - S. Piano , R. Grein , C. J. Mellor 2010
We investigate the spin-polarization of the ferromagnetic semiconductor (Ga,Mn)As by point contact Andreev reflection spectroscopy. The conductance spectra are analyzed using a recent theoretical model that accounts for momentum- and spin-dependent scattering at the interface. This allows us to fit the data without resorting, as in the case of the standard spin-dependent Blonder-Tinkham-Klapwijk (BTK) model, to an effective temperature or a statistical distribution of superconducting gaps. We find a transport polarization PC{approx}57%, in considerably better agreement with the k{cdot}p kinetic-exchange model of (Ga,Mn)As, than the significantly larger estimates inferred from the BTK model. The temperature dependence of the conductance spectra is fully analyzed.
The spin polarization of the electron current in a p-(Ga,Mn)As-n-(Al,Ga)As-Zener tunnel diode, which is embedded in a light-emitting diode, has been studied theoretically. A series of self-consistent simulations determines the charge distribution, the band bending, and the current-voltage characteristics for the entire structure. An empirical tight-binding model, together with the Landauer- Buttiker theory of coherent transport has been developed to study the current spin polarization. This dual approach allows to explain the experimentally observed high magnitude and strong bias dependence of the current spin polarization.
The magneto-crystalline anisotropy (MCA) of (Ga,Mn)As films has been studied on the basis of ab-initio electronic structure theory by performing magnetic torque calculations. An appreciable contribution to the in-plane uniaxial anisotropy can be attributed to an extended region adjacent to the surface. Calculations of the exchange tensor allow to ascribe a significant part to the MCA to the exchange anisotropy, caused either by a tetragonal distortion of the lattice or by the presence of the surface or interface.
We report on the determination of micromagnetic parameters of epilayers of the ferromagnetic semiconductor (Ga,Mn)As, which has easy axis in the sample plane, and (Ga,Mn)(As,P) which has easy axis perpendicular to the sample plane. We use an optical analog of ferromagnetic resonance where the laser-pulse-induced precession of magnetization is measured directly in the time domain. By the analysis of a single set of pump-and-probe magneto-optical data we determined the magnetic anisotropy fields, the spin stiffness and the Gilbert damping constant in these two materials. We show that incorporation of 10% of phosphorus in (Ga,Mn)As with 6% of manganese leads not only to the expected sign change of the perpendicular to plane anisotropy field but also to an increase of the Gilbert damping and to a reduction of the spin stiffness. The observed changes in the micromagnetic parameters upon incorporating P in (Ga,Mn)As are consistent with the reduced hole density, conductivity, and Curie temperature of the (Ga,Mn)(As,P) material. We report that the magnetization precession damping is stronger for the n = 1 spin wave resonance mode than for the n = 0 uniform magnetization precession mode.
General expressions for the longitudinal and transverse resistivities of single-crystalline cubic and tetragonal ferromagnets are derived from a series expansion of the resistivity tensor with respect to the magnetization orientation. They are applied to strained (Ga,Mn)As films, grown on (001)- and (113)A-oriented GaAs substrates, where the resistivities are theoretically and experimentally studied for magnetic fields rotated within various planes parallel and perpendicular to the sample surface. We are able to model the measured angular dependences of the resistivities within the framework of a single ferromagnetic domain, calculating the field-dependent orientation of the magnetization by numerically minimizing the free-enthalpy density. Angle-dependent magnetotransport measurements are shown to be a powerful tool for probing both anisotropic magnetoresistance and magnetic anisotropy. The anisotropy parameters of the (Ga,Mn)As films inferred from the magnetotransport measurements agree with those obtained by ferromagnetic resonance measurements within a factor of two.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا