No Arabic abstract
We investigate the spin-polarization of the ferromagnetic semiconductor (Ga,Mn)As by point contact Andreev reflection spectroscopy. The conductance spectra are analyzed using a recent theoretical model that accounts for momentum- and spin-dependent scattering at the interface. This allows us to fit the data without resorting, as in the case of the standard spin-dependent Blonder-Tinkham-Klapwijk (BTK) model, to an effective temperature or a statistical distribution of superconducting gaps. We find a transport polarization PC{approx}57%, in considerably better agreement with the k{cdot}p kinetic-exchange model of (Ga,Mn)As, than the significantly larger estimates inferred from the BTK model. The temperature dependence of the conductance spectra is fully analyzed.
A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [Bihler et al., Phys. Rev. B 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of electrochemical capacitance-voltage measurements and angle-dependent standing spin-wave resonance spectroscopy. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.
We have performed microwave spectroscopy of Andreev states in superconducting weak links tailored in an InAs-Al (core-full shell) epitaxially-grown nanowire. The spectra present distinctive features, with bundles of four lines crossing when the superconducting phase difference across the weak link is 0 or $pi.$ We interpret these as arising from zero-field spin-split Andreev states. A simple analytical model, which takes into account the Rashba spin-orbit interaction in a nanowire containing several transverse subbands, explains these features and their evolution with magnetic field. Our results show that the spin degree of freedom is addressable in Josephson junctions, and constitute a first step towards its manipulation.
We present magnetic and tunnel transport properties of (Ga,Mn)As/(In,Ga)As/(Ga,Mn)As structure before and after adequate annealing procedure. The conjugate increase of magnetization and tunnel magnetoresistance obtained after annealing is shown to be associated to the increase of both exchange energy $Delta$$_{exch}$ and hole concentration by reduction of the Mn interstitial atom in the top magnetic electrode. Through a 6x6 band k.p model, we established general phase diagrams of tunneling magnetoresistance (TMR) and tunneling anisotropic magnetoresistance (TAMR) textit{vs.} (Ga,Mn)As Fermi energy (E$_F$) and spin-splitting parameter (B$_G$). This allows to give a rough estimation of the exchange energy $Delta$$_{exch}$=6B$_G$$simeq$120 meV and hole concentration p$simeq1.10^{20}$cm$^{-3}$ of (Ga,Mn)As and beyond gives the general trend of TMR and TAMR textit{vs.} the selected hole band involved in the tunneling transport.
The spin polarization of the electron current in a p-(Ga,Mn)As-n-(Al,Ga)As-Zener tunnel diode, which is embedded in a light-emitting diode, has been studied theoretically. A series of self-consistent simulations determines the charge distribution, the band bending, and the current-voltage characteristics for the entire structure. An empirical tight-binding model, together with the Landauer- Buttiker theory of coherent transport has been developed to study the current spin polarization. This dual approach allows to explain the experimentally observed high magnitude and strong bias dependence of the current spin polarization.
We report inelastic neutron scattering measurements of the magnetic excitations in SrFe2As2, the parent of a family of iron-based superconductors. The data extend throughout the Brillouin zone and up to energies of ~260meV. An analysis with the local-moment J_1-J2 model implies very different in-plane nearest-neighbor exchange parameters along the $a$ and $b$ directions, both in the orthorhombic and tetragonal phases. However, the spectrum calculated from the J1-J2 model deviates significantly from our data. We show that the qualitative features that cannot be described by the J1-J2 model are readily explained by calculations from a 5-band itinerant mean-field model.