Do you want to publish a course? Click here

Weak phase stiffness and nature of the quantum critical point in underdoped cuprates

237   0   0.0 ( 0 )
 Added by Wei Ku
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the normal pseudo-gap phase without any free parameter. In the prototypical (La$_{1-x}$Sr$_x$)$_2$CuO$_4$, a kinetics-driven $d$-wave superconductivity is obtained above the critical doping $delta_csim 5.2%$, below which complete loss of superfluidity results from local quantum fluctuation involving local $p$-wave pairs. Near the critical doping, a enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Finally, a striking mass divergence is predicted at $delta_c$ that dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.



rate research

Read More

310 - Yucel Yildirim , Wei Ku 2010
Despite more than two decades of intensive investigations, the true nature of high temperature (high-$T_c$) superconductivity observed in the cuprates remains elusive to the researchers. In particular, in the so-called `underdoped region, the overall behavior of superconductivity deviates $qualitatively$ from the standard theoretical description pioneered by Bardeen, Cooper and Schrieffer (BCS). Recently, the importance of phase fluctuation of the superconducting order parameter has gained significant support from various experiments. However, the microscopic mechanism responsible for the surprisingly soft phase remains one of the most important unsolved puzzles. Here, opposite to the standard BCS starting point, we propose a simple, solvable low-energy model in the strong coupling limit, which maps the superconductivity literally into a well-understood physics of superfluid in a special dilute bosonic system of local pairs of doped holes. In the prototypical material (La$_{1-delta}$Sr$_delta$)$_2$CuO$_4$, without use of any free parameter, a $d$-wave superconductivity is obtained for doping above $sim 5.2%$, below which unexpected incoherent $p$-wave pairs dominate. Throughout the whole underdoped region, very soft phases are found to originate from enormous mass enhancement of the pairs. Furthermore, a striking mass divergence is predicted that dictates the occurrence of the observed quantum critical point. Our model produces properties of the superfluid in good agreement with the experiments, and provides new insights into several current puzzles. Owing to its simplicity, this model offers a paradigm of great value in answering the long-standing challenges in underdoped cuprates.
At the time of writing, data have been reported on several hundred different cuprates materials, of which a substantial fraction show superconductivity at temperatures as high as 130 K. The existence of several competing phases with comparable energy shows up in different ways in different materials, therefore it has not been possible to converge toward a universal theory for high Tc superconductivity. With the aim to find a unified description the Aeppli-Bianconi 3D phase diagram of cuprates has been proposed where the superlattice misfit strain (eta) is the third variable beyond doping (delta) and temperature T. The 3D phase diagrams for the magnetic order, and for the superconducting order extended to all cuprates families are described. We propose a formula able to describe the Tc (delta,eta) surface, this permits to identify the stripe quantum critical point at (delta)c=1/8 and (eta)c =7percent which is associated with the incommensurate to commensurate stripe phase transition, controlled by the misfit strain.
The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature, and quickly reaches a transition temperature close to the zero-field superconducting $T_c$. We argue that such a transition along with the presence of the coexisting phase cannot be described simply by a competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed.
Low temperature heat transport was used to investigate the ground state of high-purity single crystals of the lightly-doped cuprate YBa$_{2}$Cu$_{3}$O$_{6.33}$. Samples were measured on either side of the superconducting phase boundary, in both zero and applied magnetic field. We report the observation of delocalized fermionic excitations at zero energy in the non-superconducting state, which shows that the ground state of underdoped cuprates is metallic. Its low-energy spectrum appears to be similar to that of the d-wave superconductor, i.e. nodal. The insulating ground state observed in underdoped La$_{2-x}$Sr$_{x}$CuO$_4$ is attributed to the competing spin-density-wave order present in that system.
141 - H. Jang , W.-S. Lee , S. Song 2018
The recently demonstrated x-ray scattering approach using a free electron laser with a high field pulsed magnet has opened new opportunities to explore the charge density wave (CDW) order in cuprate high temperature superconductors. Using this approach, we substantially degrade the superconductivity with magnetic fields up to 33 T to investigate the onset of CDW order in YBa$_2$Cu$_3$O$_x$ at low temperatures near a putative quantum critical point (QCP) at $p_1sim $ 0.08 holes per Cu. We find no CDW can be detected in a sample with a doping concentration less than $p_1$. Our results indicate that the onset of the CDW ground state lies inside the zero-field superconducting dome, and broken translational symmetry is associated with the putative QCP at $p_1$
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا