No Arabic abstract
We investigate chiral and conformal properties of the lattice QCD with eight flavors (Nf=8) through meson spectrum using the Highly Improved Staggered Quark (HISQ) action. We also compare our results with those of Nf=12 and Nf=4 which we study on the same systematics. We find that the decay constant F_pi of the pseudoscalar meson pion is non-zero, with its mass M_pi consistent with zero, both in the chiral limit extrapolation of the chiral perturbation theory (ChPT). We also measure other quantities which we find are in accord with the pi data results: The rho meson mass is consistent with non-zero in the chiral limit, and so is the chiral condensate, with its value neatly coinciding with that from the Gell-Mann-Oakes-Renner relation in the chiral limit. Thus our data for the Nf=8 QCD are consistent with the spontaneously broken chiral symmetry. Remarkably enough, while the Nf=8 data near the chiral limit are well described by the ChPT, those for the relatively large fermion bare mass m_f away from the chiral limit actually exhibit a finite-size hyperscaling relation, suggesting a large anomalous dimension gamma_m ~ 1. This implies that there exists a remnant of the infrared conformality, and suggests that a typical technicolor (one-family model) as modeled by the Nf=8 QCD can be a walking technicolor theory having an approximate scale invariance with large anomalous dimension gamma_m ~ 1.
Based on the highly improved staggered quark action, we perform lattice simulations of $N_f=8$ QCD and confirm our previous observation of a flavor-singlet scalar meson (denoted as $sigma$) as light as the pion and various walking signals through low-lying spectra, with higher statistics, smaller fermion masses $m_f$, and larger volumes. We measure $M_pi$, $F_pi$, $M_rho$, $M_{a_0}$, $M_{a_1}$, $M_{b_1}$, $M_N$, $M_sigma$, $F_sigma$, $langle bar{psi} psirangle$ (both directly and through the GMOR relation), and the string tension. The data are consistent with the spontaneously broken phase of the chiral symmetry, in agreement with the previous results: ratios of the quantities to $M_pi$ monotonically increase in the smaller $m_f$ region towards the chiral limit similarly to $N_f=4$ QCD, in sharp contrast to $N_f=12$ QCD where the ratios become flattened. The hyperscaling relation holds with roughly a universal value of the anomalous dimension, $gamma_m simeq 1$, with a notable exception of $M_pi$ with $gamma_m simeq 0.6$ as in the previous results. This is a salient feature (walking signal) of $N_f=8$, unlike either $N_f=4$ which has no hyperscaling relation at all, or $N_f=12$ QCD which exhibits universal hyperscaling. We further confirm the previous observation of the light $sigma$ with mass comparable to the pion in the studied $m_f$ region. In a chiral limit extrapolation of the $sigma$ mass using the dilaton chiral perturbation theory and also using the simple linear fit, we find the value consistent with the 125 GeV Higgs boson within errors. Our results suggest that the theory could be a good candidate for walking technicolor model, having anomalous dimension $gamma_m simeq 1$ and a light flavor-singlet scalar meson as a technidilaton, which can be identified with the 125 GeV composite Higgs in $N_f=8$ one-family model.
We present the ETMC results for the bag parameters describing the neutral kaon mixing in the Standard Model and beyond and preliminary results for the bag parameters controlling the short distance contributions in the D^0-bar{D}^0 oscillations. We also present preliminary results for the B_{Bd}, B_{Bs}, B_{Bs}/B_{Bd} and xi -parameter controlling B^0_-bar{B}^0 oscillations in the Standard Model employing the so-called ratio method. Using Nf=2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks we achieve both O(a)-improvement and continuum like renormalization pattern. Simulations are performed at three-values of the lattice spacing and several values of quark masses in the light, strange, charm region and above charm up to ~2.5m_c. Our results are extrapolated to the continuum limit and extrapolated/interpolated to the physical quark masses.
We study the quark-gluon vertex in the limit of vanishing gluon momentum using lattice QCD with 2 flavors of O(a) improved Wilson fermions, for several lattice spacings and quark masses. We find that all three form factors in this kinematics have a significant infrared strength, and that both the leading form factor $lambda_1$, multiplying the tree-level vertex structure, and the scalar, chiral symmetry breaking form factor $lambda_3$ are significantly enhanced in the infrared compared to the quenched (Nf=0) case. These enhancements are orders of magnitude larger than predicted by one-loop perturbation theory. We find only a weak dependence on the lattice spacing and quark mass.
We present the first calculation of the kaon semileptonic form factor with sea and valence quark masses tuned to their physical values in the continuum limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of simulations at the phenomenologically convenient point of zero momentum transfer in large physical volumes and for two different values of the lattice spacing. Our prediction for the form factor is f+(0)=0.9685(34)(14) where the first error is statistical and the second error systematic. This result can be combined with experimental measurements of K->pi decays for a determination of the CKM-matrix element for which we predict |Vus|=0.2233(5)(9) where the first error is from experiment and the second error from the lattice computation.
We present the results of a lattice QCD calculation of the pseudoscalar meson decay constants fpi, fK, fD and fDs, performed with Nf=2 dynamical fermions. The simulation is carried out with the tree-level improved Symanzik gauge action and with the twisted mass fermionic action at maximal twist. We have considered for the final analysis three values of the lattice spacing, a~0.10 fm, 0.09 fm and 0.07 fm, with pion masses down to mpi~270 MeV. Our results for the light meson decay constants are fK=158.1(2.4) MeV and fK/fpi=1.210(18). From the latter ratio, by using the experimental determination of Gamma(K-->mu nu_mu (gamma))/ Gamma(pi--> mu nu_mu (gamma)) and the average value of |Vud| from nuclear beta decays, we obtain |Vus|=0.2222(34), in good agreement with the determination from semileptonic Kl3 decays and the unitarity constraint. For the D and Ds meson decay constants we obtain fD=197(9) MeV, fDs=244(8) MeV and fDs/fD=1.24(3). Our result for fD is in good agreement with the CLEO experimental measurement. For fDs our determination is smaller than the PDG 2008 experimental average but in agreement with a recent improved measurement by CLEO at the 1.4 sigma level.