Do you want to publish a course? Click here

Stacking and electric field effects on the electronic properties of the layered GaN

206   0   0.0 ( 0 )
 Added by Haiying He
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stability and electronic properties of atomic layers of GaN are investigated in the framework of the van der Waals-density functional theory. We find that the ground state of the layered GaN is a planar graphene-like configuration rather than a buckled bulk-like configuration. Application of an external perpendicular electric field to the layered GaN induces distinct stacking-dependent features of the tunability of the band gap; the band gap of the monolayer does not change whereas that of the trilayer GaN is significantly reduced for the applied field of 0.4 V/ {AA}. It is suggested that such a stacking-dependent tunability of the band gap in the presence of an applied field may lead to novel applications of the devices based on the layered GaN.



rate research

Read More

113 - Chiun-Yan Lin , , Ming-Fa Lin 2019
The electronic properties and optical excitations are investigated in the geometry- and field-modulated bilayer graphene systems, respectively, by using the tight-binding model and Kubo formula. The stacking symmetry of bilayer graphene can be manipulated by varying the width and position of domain wall (DW) within two normally stacked graphene. All the layer-dependent atomic interactions are taken into consideration under external fields. The modulation of stacking configuration gives rise to significant effects of zone folding on energy subbands, subenvelope wave functions, density of states, and optical absorption spectra. This study clearly illustrates the diverse 1D phenomena in the energy band structure and absorption spectra; the DW- and $V_z$-created dramatic variations are comprehensively explored under accurate calculations and delicate analysis. Concise physical pictures are proposed to give further insight into the quasi-1D behaviors.
Monolayer 1T-WTe2 is a quantum spin Hall insulator with a gapped bulk and gapless helical edge states persisting to temperatures around 100 K. Recent studies have revealed a topological-to-trivial phase transition as well the emergence of an unconventional, potentially topological superconducting state upon tuning the carrier concentration with gating. However, despite extensive studies, the effects of gating on the band structure and the helical edge states have not yet been established. In this work we present a combined low-temperature STM and first principles study of back-gated monolayer 1T-WTe2 films grown on graphene. Consistent with a quantum spin Hall system, the films show well-defined bulk gaps and clear edge states that span the gap. By directly measuring the density of states with STM spectroscopy, we show that the bulk band gap magnitude shows substantial changes with applied gate voltage, which is contrary to the naive expectation that a gate would rigidly shift the bands relative to the Fermi level. To explain our data, we carry out density functional theory and model Hamiltonian calculations which show that a gate electric field causes doping and inversion symmetry breaking which polarizes and spin-splits the bulk bands. Interestingly, the calculated spin splitting from the effective Rashba-like spin-orbit coupling can be in the tens of meV for the electric fields in the experiment, which may be useful for spintronics applications. Our work reveals the strong effect of electric fields on the bulk band structure of monolayer 1T-WTe2, which will play a critical role in our understanding of gate-induced phenomena in this system.
Quantum-dot states in graphene nanoribbons (GNR) were calculated using density-functional theory, considering the effect of the electric field of gate electrodes. The field is parallel to the GNR plane and was generated by an inhomogeneous charge sheet placed atop the ribbon. Varying the electric field allowed to observe the development of the GNR states and the formation of localized, quantum-dot-like states in the band gap. The calculation has been performed for armchair GNRs and for armchair ribbons with a zigzag section. For the armchair GNR a static dielectric constant of {epsilon} approx. 4 could be determined.
We study the binding energies and optical properties of direct and indirect excitons in monolayers and double layer heterostructures of Xenes: silicene, germanene, and stanene. It is demonstrated that an external electric field can be used to tune the eigenenergies and optical properties of excitons by changing the effective mass of charge carriers. The Schr{o}dinger equation with field-dependent exciton reduced mass is solved by using the Rytova-Keldysh (RK) potential for direct excitons, while both the RK and Coulomb potentials are used for indirect excitons. It is shown that for indirect excitons, the choice of interaction potential can cause huge differences in the eigenenergies at large electric fields and significant differences even at small electric fields. Furthermore, our calculations show that the choice of material parameters has a significant effect on the binding energies and optical properties of direct and indirect excitons. These calculations contribute to the rapidly growing body of research regarding the excitonic and optical properties of this new class of two dimensional semiconductors.
348 - K. Smaali , S. Desbief , G. Foti 2014
We present a quantitative exploration, combining experiment and simulation, of the mechanical and electronic properties, as well as the modifications induced by an alkylthiolated coating, at the single NP level. We determine the response of the NPs to external pressure in a controlled manner by using an atomic force microscope tip. We find a strong reduction of their Young modulus, as compared to bulk gold, and a significant influence of strain in the electronic properties of the alkylthiolated NPs. Electron transport measurements of tiny molecular junctions (NP/alkylthiol/CAFM tip) show that the effective tunnelling barrier through the adsorbed monolayer strongly decreases with increasing the applied load, which translates in a remarkable and unprecedented increase of the tunnel current. These observations are successfully explained using simulations based on finite element analysis (FEA) and first-principles calculations that permit to consider the coupling between the mechanical response of the system and the electric dipole variations at the interface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا