Do you want to publish a course? Click here

An INTEGRAL view of High Mass X-ray Binaries : their nature, formation and evolution

199   0   0.0 ( 0 )
 Added by Sylvain Chaty Dr.
 Publication date 2013
  fields Physics
and research's language is English
 Authors Sylvain Chaty




Ask ChatGPT about the research

We describe here the nature, formation and evolution of the supergiant high mass X-ray binary (HMXB) population, i.e. systems accreting the stellar wind of supergiant stars. There are now many new observations, from the high-energy side (mainly from the INTEGRAL satellite), complemented by multi-wavelength observations (mainly in the optical, near and mid-infrared from ESO facilities), showing that a new population of supergiant HMXBs has been recently revealed. We report here on the observational facts about the different categories of HMXBs, allowing to build a consistent scenario explaining the various characteristics of these sources, based on models of accretion in these sources (e.g. transitory accretion disc versus clumpy winds). We also mention new observations suggesting the existence of evolutionary links between Be and stellar wind accreting supergiant X-ray binaries.



rate research

Read More

259 - Sylvain Chaty 2011
The aim of this review is to describe the nature, formation and evolution of the three kinds of high mass X-ray binary (HMXB) population: i. systems hosting Be stars (BeHMXBs), ii. systems accreting the stellar wind of supergiant stars (sgHMXBs), and iii. supergiant stars overflowing their Roche lobe. There are now many new observations, from the high-energy side (mainly from the INTEGRAL satellite), complemented by multi-wavelength observations (mainly in the optical, near and mid-infrared from ESO facilities), showing that a new population of supergiant HMXBs has been recently revealed. New observations also suggest the existence of evolutionary links between Be and stellar wind accreting supergiant X-ray binaries. I describe here the observational facts about the different categories of HMXBs, discuss the different models of accretion in these sources (e.g. transitory accretion disc versus clumpy winds), show the evidences of a link between different kinds of HMXBs, and finally compare observations with population synthesis models.
213 - Sylvain Chaty 2014
In this review I first describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. I then report on the discovery of two new populations of HMXBs hosting supergiant stars, recently revealed by a wealth of new observations, coming from the high energy side (INTEGRAL, Swift, XMM, Chandra satellites), and complemented by multi-wavelength optical/infrared observations (mainly ESO facilities). The first population is constituted of obscured supergiant HMXBs, the second one of supergiant fast X-ray transients (SFXTs), exhibiting short and intense X-ray flares. I finally discuss the formation and evolution of HMXBs, constrain the accretion models (e.g. clumpy winds, transitory accretion disc, magneto-centrifugal barrier), show evidences suggesting the existence of an evolutionary link, include comparisons with population synthesis models, and finally build a consistent scenario explaining the various characteristics of these extreme celestial sources. Because they are the likely progenitors of Luminous Blue Variables (LBVs), and also of neutron star/black hole binary mergers, related to short/hard gamma-ray bursts, the knowledge of the nature, formation and evolution of these HMXB populations is of prime importance.
We analyzed in a systematic way the public INTEGRAL observations spanning from December 2002 to September 2016, to investigate the hard X-ray properties of about 60 High Mass X-ray Binaries (HMXBs). We considered both persistent and transient sources, hosting either a Be star (Be/XRBs) or a blue supergiant companion (SgHMXBs, including Supergiant Fast X-ray Transients, SFXTs), a neutron star or a black hole. INTEGRAL X-ray light curves (18-50 keV), sampled at a bin time of about 2 ks, were extracted for all HMXBs to derive the cumulative distribution of their hard X-ray luminosity, their duty cycle, the range of variability of their hard X-ray luminosity. This allowed us to obtain an overall and quantitative characterization of the long-term hard X-ray activity of the HMXBs in our sample. Putting the phenomenology observed with INTEGRAL into context with other known source properties (e.g. orbital parameters, pulsar spin periods) together with observational constraints coming from softer X-rays (1-10 keV), enabled the investigation of the way the different HMXB sub-classes behave (and sometimes overlap). For given source properties, the different sub-classes of massive binaries seem to cluster in a suggestive way. However, for what concerns supergiant systems (SgHMXBs versus SFXTs), several sources with intermediate properties exist, suggesting a smooth transition between the two sub-classes.
We present preliminary results on Herschel/PACS mid/far-infrared photometric observations of INTEGRAL supergiant High Mass X-ray Binaries (HMXBs), with the aim of detecting the presence and characterizing the nature of absorbing material (dust and/or cold gas), either enshrouding the whole binary systems, or surrounding the sources within their close environment. These unique observations allow us to better characterize the nature of these HMXBs, to constrain the link with their environment (impact and feedback), and finally to get a better understanding of the formation and evolution of such rare and short-living supergiant HMXBs in our Galaxy.
Since it started observing the sky, the INTEGRAL satellite has discovered new categories of high mass X-ray binaries (HMXB) in our Galaxy. These observations raise important questions on the formation and evolution of these rare and short-lived objects. We present here new infrared observations from which to reveal or constrain the nature of 15 INTEGRAL sources, which allow us to update and discuss the Galactic HMXB population statistics. After previous photometric and spectroscopic observing campaigns in the optical and near-infrared, new photometry and spectroscopy was performed in the near-infrared with the SofI instrument on the ESO/NTT telescope in 2008 and 2010 on a sample of INTEGRAL sources. These observations, and specifically the detection of certain features in the spectra, allow the identification of these high-energy objects by comparison with published nIR spectral atlases of O and B stars. We present photometric data of nine sources (IGR J10101-5654, IGR J11187-5438, IGR J11435-6109, IGR J14331-6112, IGR J16328-4726, IGR J17200-3116, IGR J17354-3255, IGR J17404-3655, and IGR J17586-2129) and spectroscopic observations of 13 sources (IGR J10101-5654, IGR J11435-6109, IGR J13020-6359, IGR J14331-6112, IGR J14488-5942, IGR J16195-4945, IGR J16318-4848, IGR J16320-4751, IGR J16328-4726, IGR J16418-4532, IGR J17354-3255, IGR J17404-3655, and IGR J17586-2129). Our spectroscopic measurements indicate that: five of these objects are Oe/Be high-mass X-ray binaries (BeHMXB), six are supergiant high-mass X-ray binaries (sgHMXB), and two are sgB[e]. From a statistical point of view, we estimate the proportion of confirmed sgHMXB to be 42% and that of the confirmed BeHMXB to be 49%. The remaining 9% are peculiar HMXB.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا