Do you want to publish a course? Click here

Multi-input Schrodinger equation: controllability, tracking, and application to the quantum angular momentum

88   0   0.0 ( 0 )
 Added by Marco Caponigro
 Publication date 2013
  fields
and research's language is English
 Authors Ugo Boscain




Ask ChatGPT about the research

We present a sufficient condition for approximate controllability of the bilinear discrete-spectrum Schrodinger equation exploiting the use of several controls. The controllability result extends to simultaneous controllability, approximate controllability in $H^s$, and tracking in modulus. The result is more general than those present in the literature even in the case of one control and permits to treat situations in which the spectrum of the uncontrolled operator is very degenerate (e.g. it has multiple eigenvalues or equal gaps among different pairs of eigenvalues). We apply the general result to a rotating polar linear molecule, driven by three orthogonal external fields. A remarkable property of this model is the presence of infinitely many degeneracies and resonances in the spectrum preventing the application of the results in the literature.



rate research

Read More

In this paper we prove an approximate controllability result for the bilinear Schrodinger equation. This result requires less restrictive non-resonance hypotheses on the spectrum of the uncontrolled Schrodinger operator than those present in the literature. The control operator is not required to be bounded and we are able to extend the controllability result to the density matrices. The proof is based on fine controllability properties of the finite dimensional Galerkin approximations and allows to get estimates for the $L^{1}$ norm of the control. The general controllability result is applied to the problem of controlling the rotation of a bipolar rigid molecule confined on a plane by means of two orthogonal external fields.
80 - Cyril Letrouit 2019
We address the following problem: given a Riemannian manifold $(M,g)$ and small parameters $varepsilon>0$ and $v>0$, is it possible to find $T>0$ and an absolutely continuous map $x:[0,T]rightarrow M, tmapsto x(t)$ satisfying $|dot{x}|_{infty}leq v$ and such that any geodesic of $(M,g)$ traveled at speed $1$ meets the open ball $B_g(x(t),varepsilon)subset M$ within time $T$? Our main motivation comes from the control of the wave equation: our results show that the controllability of the wave equation in any dimension of space can be improved by allowing the domain of control to move adequately, even very slowly. We first prove that, in any Riemannian manifold $(M,g)$ satisfying a geodesic recurrence condition (GRC), our problem has a positive answer for any $varepsilon>0$ and $v>0$, and we give examples of Riemannian manifolds $(M,g)$ for which (GRC) is satisfied. Then, we build an explicit example of a domain $Xsubsetmathbb{R}^2$ (with flat metric) containing convex obstacles, not satisfying (GRC), for which our problem has a negative answer if $varepsilon$ and $v$ are small enough, i.e., no sufficiently small ball moving sufficiently slowly can catch all geodesics of $X$.
In this article we discuss which controllability properties of classical Hamiltonian systems are preserved after quantization. We discuss some necessary and some sufficient conditions for small-time controllability of classical systems and quantum systems using the WKB method. In particular, we investigate the conjecture that if the classical system is not small-time controllable, then the corresponding quantum system is not small-time controllable either.
The aim of this paper is to perform a Stackelberg strategy to control parabolic equations. We have one control, textit{the leader}, that is responsible for a null controllability property; additionally, we have a control textit{the follower} that solves a robust control objective. That means, that we seek for a saddle point of a cost functional. In this way, the follower control is not sensitive to a broad class of external disturbances. As far as we know, the idea of combining robustness with a Stackelberg strategy is new in literature
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا